
Final Report #27 
June 2022 

 

Pedestrian-Vehicle Interaction in a CAV 
Environment: Explanatory Metrics 
Jon D. Fricker 
Yunchang Zhang 



 

  
 

 

 

           

  

  

 

 

 

 
 

 

  

 

  

 

 

   

Report No. 27 Report Date: June 2022 

Project Start Date: 8/15/2017 

Project End Date: 12/31/2020 

Pedestrian-Vehicle Interaction in a CAV 
Environment: Explanatory Metrics 

Yunchang Zhang 

Graduate Researcher 
Purdue University 

Jon. D. Fricker 

Professor 
Purdue University 



 

 

  

     

 

    

   

     

   

    

 
 

 

   

 

 

  

 

 

 

  

 

 

  

 

 

  

 

 

 

 

 

  

 

 

 

 

ACKNOWLEDGEMENTS AND DISCLAIMER 

Funding for this research was provided by the Center for Connected and Automated Transportation 

under Grant No. 69A3551747105 of the U.S. Department of Transportation, Office of the Assistant 

Secretary for Research and Technology (OST-R), University Transportation Centers Program. The 

contents of this report reflect the views of the authors, who are responsible for the facts and the 

accuracy of the information presented herein. This document is disseminated under the 

sponsorship of the Department of Transportation, University Transportation Centers Program, in 

the interest of information exchange. The U.S. Government assumes no liability for the contents 

or use thereof. 

Zhang, Y., and Fricker, J.D. (2022). Pedestrian-Vehicle Interaction in a CAV Environment: 

Explanatory Metrics, CCAT Report #27, Center for Connected and Automated Transportation, 

Purdue University, West Lafayette, IN. 

Contact Information 

Samuel Labi 

3000 Kent Ave., West Lafayette, IN 

Phone: 7654945926 

Email:  labi@purdue.edu 

Jon. D. Fricker 

550 Stadium Mall Dr. 

W. Lafayette, IN 

Phone: (765) 494-2205 

Email: fricker@purdue.edu 

CCAT 

University of Michigan Transportation 

Research Institute 

2901 Baxter Road 

Ann Arbor, MI  48152 

uumtri-ccat@umich.edu 

(734) 763-2498 

www.ccat.umtri.umich.edu 

mailto:labi@purdue.edu
mailto:uumtri-ccat@umich.edu
http://www.ccat.umtri.umich.edu/


 

 

 

   

   

  

 

    

 

   

    

   

  

   

 

  

     

   

  

 

    

      

       

            

 

   

 

   

  

     

  

      

         

    

 

   

    

 

   

           

    

  

             

              

          

         

            

            

            

            

          

             

          

              

            

                

              

        

         

         

            

         

          

          

   

     

 

  

   

      

 

      

 

    

 

 

 

 

        

 

Technical Report Documentation Page 

1. Report No. 

CCAT Report #27 

2. Government Accession No. 

N/A 

3. Recipient’s Catalog No. 
N/A 

4. Title and Subtitle 

Pedestrian-Vehicle Interaction in a CAV Environment: Explanatory Metrics 

5. Report Date 

June 2022 

6. Performing Organization Code 

N/A 

7. Author(s) 

Yunchang Zhang, Jon. D. Fricker 

8. Performing Organization Report 

No. 

N/A 

9. Performing Organization Name and Address 

Center for Connected and Automated Transportation 

Purdue University, 550 Stadium Mall Drive, W. Lafayette, IN 47907;  

and University of Michigan Ann Arbor, 2901 Baxter Road, Ann Arbor, MI 

48109 

10. Work Unit No. 

N/A 

11. Contract or Grant No. 

Contract No. 69A3551747105 

12. Sponsoring Agency Name and Address 

U.S. Department of Transportation 

Office of the Assistant Secretary for Research and Technology 

1200 New Jersey Avenue, SE, Washington, DC 20590 

13. Type of Report and Period 

Covered 

Final Report. 8/15/2017 - 12/31/2020 

14. Sponsoring Agency Code 

OST-R 

15. Supplementary Notes 

Conducted under the U.S. DOT Office of the Assistant Secretary for Research and Technology’s (OST-R) University 

Transportation Centers (UTC) program. 

16. Abstract 

A large number of crosswalks are indicated by pavement markings and signs but are not signal-controlled. In this 

study, such a location is called “semi-controlled”. In locations where such a crosswalk has moderate levels of 

pedestrian and vehicle traffic, pedestrians and motorists often engage in a non-verbal “negotiation” to determine who 
should proceed first. In this study, 3400 pedestrian-motorist non-verbal interactions at such semi-controlled 

crosswalks were recorded by video. The crosswalk locations observed during the study underwent a conversion from 

one-way operations in Spring 2017 to two-way operations in Spring 2018. 

This research explored the factors that could be associated with pedestrian crossing behavior and motorist likelihood 

of decelerating. A mixed-effects logit model and binary logistic regression were used to identify factors that influence 

the likelihood of pedestrian crossing under specific conditions. The complementary motorist models used generalized 

ordered logistic regression to identify factors that impact a driver’s likelihood of decelerating, which was found to be 

a more useful outcome compared to the likelihood of yielding to the pedestrian. The data showed that 56.5% of 

drivers slowed down or stopped for pedestrians on the one-way street. This value rose to 63.9% on the same street 

after it had been converted to 2-way operations. Moreover, the two-way operations eliminated the effect of the 

presence of other vehicles on driver behavior. The study also investigated the factors that could influence how long a 

pedestrian is likely to wait at a semi-controlled crosswalk. Two types of models were proposed to correlate pedestrian 

waiting time with a number of covariates. First, survival models were developed to analyze pedestrian wait time based 

on time-to-first-event analysis. Second, multi-state Markov models were introduced to correlate the dynamic process 

between recurrent events. By combining the time-to-first-event and recurrent events, the analysis addressed the 

drawbacks of each of the two methods. The findings from the before-and-after study can contribute to operational and 

control strategy development to improve levels of service at unsignalized crosswalks. The study results can contribute 

to policies and/or control strategies that will improve the efficiency of semi-controlled and similar crosswalks. This 

type of crosswalk is common, so the benefits of well-supported strategies could be substantial. 

17. Key Words 

Pedestrian crossings, Pedestrian-vehicle interaction, Pedestrian 

wait behavior 

18. Distribution Statement 

No restrictions. 

19. Security Classif. (of this report) 

Unclassified 

20. Security Classif. (of this page) 

Unclassified 

21. No. of Pages 

60 

22. 

Price 

N/A 

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized 

3 



 

 

 

   

 

    

 

    

 

    

    

      

 

      

      

     

    

 

    

    

    

    

    

    

 

    

     

    

    

    

    

    

    

    

    

    

 

      

    

    

    

    

    

    

    

TABLE OF CONTENTS 

LIST OF TABLES …………………………………………………………………… 4 

LIST OF FIGURES …………………………………………………………………… 5 

LIST OF ABBREVIATIONS ……………………………………………………. 6 

CHAPTER 1. INTRODUCTION …………………………………………………….. 7 

1.1 Background and Problem Statement …………………………………………….. 7 

1.2 Study Objective and Research Questions …………………………………….. 8 

CHAPTER 2. REVIEW OF LITERATURE …………………………………….. 9 

2.1 Pedestrian Crossing Behavior …………………………………………….. 9 

2.2 Driver Yielding Behavior …………………………………………………….. 9 

2.3 Pedestrian Wait Behavior …………………………………………………….. 10 

CHAPTER 3. RESEARCH METHODOLOGY …………………………………….. 12 

3.1 Study Site Description …………………………………………………….. 12 

3.2 Definition …………………………………………………………………….. 12 

3.2.1 Interaction …………………………………………………………………….. 12 

3.2.2 First Event & Critical Event …………………………………………………….. 13 

3.2.3 Recurrent Events …………………………………………………………….. 13 

CHAPTER 4. PEDESTRIAN-VEHICLE INTERACTION …………………………….. 18 

4.1 Explanatory Variables …………………………………………………….. 18 

4.1.1 Pedestrian Behavior …………………………………………………………….. 14 

4.1.2 Motorist Behavior …………………………………………………………….. 15 

4.2 Descriptive Statistics …………………………………………………………….. 16 

4.3 Modeling Approach …………………………………………………………….. 17 

4.3.1 Pedestrian Model …………………………………………………………….. 17 

4.3.2 Pedestrian Model Discussion …………………………………………………….. 19 

4.3.3 Motorist Model …………………………………………………………….. 25 

4.3.4 Motorist Model Discussion …………………………………………………….. 27 

4.3.5 Summary …………………………………………………………………….. 28 

CHAPTER 5. PEDESTRIAN WAIT TIME – SURVIVAL ANALYSIS …………….. 29 

5.1 Accelerated Failure Time (AFT) Model …………………………………….. 29 

5.1.1 Log-Linear Model …………………………………………………………….. 30 

5.1.2 AFT Model Structure …………………………………………………………….. 30 

5.2 Model Discussions …………………………………………………………….. 32 

5.2.1 Before and After Studies …………………………………………………….. 34 

5.2.1.1 Distance and Speed …………………………………………………………….. 34 

5.2.1.2 Pedestrian Characteristics …………………………………………………….. 36 

4 



 

 

    

    

    

    

    

 

        

    

    

    

    

    

     

    

    

    

    

     

    

    

    

    

 

    

    

    

 

     

     

     

 

    

    

    

    

    

    

    

 

   

 

   

5.2.1.3 Environmental Factors ……………………………………………….. 35 

5.3 Model Performance ……………………………………………………….. 36 

5.3.1 Mean Absolute Percentage Error (MAPE) ……………………………….. 36 

5.3.2 Error Tolerance ……………………………………………………….. 36 

5.4 Summary ……………………………………………………………….. 37 

CHAPTER 6. PEDESTRIAN WAIT TIME – MARKOVIAN APPROACH 38 

6.1 Model Formulation ………………………………………………………. 38 

6.1.1 Distribution of Durations ………………………………………………. 39 

6.1.2 Parameterization ………………………………………………………. 41 

6.1.3 Hazard of Semi-Markov Process ………………………………………. 42 

6.2 Model Discussions ………………………………………………………. 43 

6.2.1 Number of Pedestrians Impacts ………………………………………. 43 

6.2.2 Vehicle Dynamics ………………………………………………………. 44 

6.2.3 Hesitation ………………………………………………………………. 45 

6.2.4 Pedestrian Characteristics ………………………………………………. 45 

6.2.5 Distance and Speed ………………………………………………………. 46 

6.3 Before and After Studies ………………………………………………. 47 

6.3.1 Group Effects ………………………………………………………………. 47 

6.3.2 Using Cellphone or Talking ………………………………………………. 48 

6.3.3 Vehicle Type ………………………………………………………………. 48 

6.3.4 Adjacent Vehicle ………………………………………………………. 48 

CHAPTER 7. Conclusions and Recommendations ………………………………. 49 

7.1 Pedestrian-Motorist Interaction ………………………………………. 49 

7.2 Pedestrian Waiting Time ………………………………………………. 50 

CHAPTER 8. Synopsis of Performance Indicators ………………………………. 52 

8.1 Part I ………………………………………………………………………. 52 

8.2 Part II ………………………………………………………………………. 52 

CHAPTER 9. Outputs, Outcomes, and Impacts ………………………………. 52 

9.1 Research Outputs ………………………………………………………. 52 

9.1.1 Synopsis of Project ………………………………………………………. 52 

9.1.2 List of Publications ………………………………………………………. 52 

9.1.3 List of Presentations ………………………………………………………. 53 

9.1.4 List of Outcomes and Highlights ………………………………………. 53 

9.1.5 List of Impacts ………………………………………………………. 53 

LIST OF REFERENCES ………………………………………………………. 54 

APPENDIX ………………………………………………………………………. 57 

5 



 

 

 

    

  

   

   

   

    

   

   

   

   

    

   

   

 

 

 

 

 

 

 

 

 

 

 

 

LIST OF TABLES 

Table 1.Explanatory Variables...................................................................................................... 17 

Table 2.Descriptive Statistics........................................................................................................ 18 

Table 3 Binary Logistic Regression Results for Pedestrian Models............................................. 20 

Table 4.Generalized Ordered Logistic Regression Model Results ............................................... 27 

Table 5.Marginal Effects .............................................................................................................. 28 

Table 6 Explanatory Variables and Descriptive Statistics ............................................................ 31 

Table 7.Log-Linear Regression .................................................................................................... 34 

Table 8.AFT Model Estimated Results......................................................................................... 35 

Table 9.Weibull Distribution Duration Parameters ...................................................................... 41 

Table 10.Wald Test of Weibull Distribution ................................................................................ 41 

Table 11.The Most Likely Wait Times......................................................................................... 42 

Table 12.Parametric Effects of Multi-State Model....................................................................... 43 

Table 13.Summary of Model Results ........................................................................................... 51 

6 



 

 

  

  

   

    

    

   

    

    

    

    

   

     

   

    

   

    

   

   

   

  

  

   

  

   

 

 

 

 

 

 

LIST OF FIGURES 

Figure 1.Semi-Controlled Crosswalk.............................................................................................. 9 

Figure 2.Multi-State Framework for Pedestrian Waiting Behavior (Zhang, 2019)...................... 15 

Figure 3.Effects of Hesitation and Slow Down on Pedestrian Crossing Behavior....................... 22 

Figure 4.Effects of Distance and Speed on Pedestrian Crossing Behavior .................................. 22 

Figure 5.Effects of AdjVeh and NoF on Pedestrian Crossing Behavior ...................................... 23 

Figure 6.Effects of FlowWith and FlowAgainst on Pedestrian Crossing Behavior ..................... 23 

Figure 7.Effects of Hesitation and SlowsDown on Pedestrian Crossing Behavior ...................... 24 

Figure 8.Effects of Distance and Speed on Pedestrian Crossing Behavior .................................. 25 

Figure 9.Effects of DiffDirec and GroupSize Variables on Pedestrian Crossing Behavior ......... 25 

Figure 10.Non-Parametric Survival Estimations and Fitted Distributions ................................... 33 

Figure 11.Relationships between Pedestrian Delay and Distance & Speed (One-Way Case) ..... 36 

Figure 12.Effects of Pedestrian Characteristics (Two-Way) ........................................................ 37 

Figure 13.Effects of Environmental Factors (Two-Way) ............................................................. 37 

Figure 14.Prediction Accuracy under Different Error Tolerance ................................................. 38 

Figure 15.Density Functions Between Different Transitions. ...................................................... 42 

Figure 16.Pedestrian Impacts........................................................................................................ 45 

Figure 17.Multiple Vehicle Effects............................................................................................... 46 

Figure 18.Hesitation Parameter Effects ........................................................................................ 47 

Figure 19.Pedestrian Characteristics Impact................................................................................. 48 

Figure 20.Distance Parameter Effects........................................................................................... 48 

Figure 21.Speed Parameter Effects............................................................................................... 49 

Figure 22.Group Effects on Two-Way Case................................................................................. 49 

Figure 23.Distraction Effects on Two-Way Case ......................................................................... 50 

7 

file:///C:/Desktop/CCAT/Main%20Report%20-%20Pedestrian%20interaction%20April%2023_edited.docx%23_Toc101602294
file:///C:/Desktop/CCAT/Main%20Report%20-%20Pedestrian%20interaction%20April%2023_edited.docx%23_Toc101602309


 

 

  
 

  

      

   

  

   

  

  

 

  

  

 

  

  

   

  

        

  

    

       

 

   

         

 

       

 

        

 

 

  

 

  

    

LIST OF ABBREVIATIONS AND ACRONYMS 

GroupSize The number of pedestrians in the curb area, including the subject pedestrian 

AgeRange Estimated age range (yrs) for subject pedestrian(s) – 1(0-10), 2(10-30), 3(30-50), 4(>50) 

Sex Sex of subject pedestrian 

Hesitation Does the pedestrian slow down or wait at curb? 

Distraction Does a pedestrian approach and/or cross while using a cellphone or talking? 

FlowWith The number of pedestrians already crossing in the crosswalk in the same direction when 

subject pedestrian arrives at curb area 

FlowAgainst The number of pedestrians already crossing in the crosswalk in the opposite direction 

when subject pedestrian arrives at curb area 

FlowOn Total number of pedestrians already crossing in the crosswalk when an interaction occurs 

(FlowWith + FlowAgainst) 

SameDirec The number of pedestrians present in the curb area crossing in the same direction as the 

subject pedestrian 

DiffDirec The number of pedestrians present in a curb area with crossing direction opposite of the 

subject pedestrian 

PedWait Total number of pedestrians waiting in the curb areas when an interaction occurs 

(SameDirec + DiffDirec) 

ApprSpeed The approach speed of interacted vehicles when a pedestrian enters the curb area. (mph) 

SlowsDown Does a vehicle slow down or stop on the approach to the crosswalk when a pedestrian 

enters the curb area? 

CloseFollow Does the interacted vehicle have a close follower when an interaction occurs? 

AdjVeh Is a vehicle already present in the adjacent lane when a motorist begins to interact with a 

pedestrian? 

Distance The distance of interacted vehicle(s) to subject pedestrians when interaction begins. (in 

ft.) 

NoF Is pedestrian entering curb area on the near side or far side of the approaching vehicle's 

lane? 

Pedestrian Cross: Y = 1; Wait/Yield: Y = 0 

Outcomes 

Vehicle Level of vehicle deceleration when pedestrian enters crosswalk 

Response 
(3 = stops; 2 = slows down; 1 = Does not slow down). 

8 



 

 

 

  

  

     

   

     

     

      

      

       

 

   

     

 

        

 

 

                                                                                                             

  

       

           

         

 

 

  

1. INTRODUCTION 

1.1. Background and Problem Statement 

“State Law Yield to Pedestrian Within Crosswalk” signs (Figure 1(a)) are commonly used at unsignalized 

pedestrian crosswalks where pedestrian-motorist interaction frequently occurs. Pedestrians using 

crosswalks with “State Law Yield to Pedestrian Within Crosswalk” signs theoretically have priority over 

approaching vehicles. Nevertheless, observations confirm that confusion exists among pedestrians and 

motorists, because the sign’s message is subject to varying interpretations. At certain times, a motorist 

stops and lets pedestrians standing at the curb cross the street, and sometimes, drivers fail to yield to 

pedestrians entering the crosswalk. In many cases, a non-verbal “negotiation” takes place between 
pedestrians and motorists, to determine who should proceed first. 

Consequently, confusion between pedestrians and motorists leads to unnecessary delays for both 

pedestrians and vehicles and increase risks to pedestrian safety. An investigation of pedestrian crossing 

behavior and waiting behavior at such locations can be useful in developing policies and control strategies 

to enhance a pedestrian’s perceived safety and improve the level of service (LOS) at unsignalized 
intersections. 

(a)  (b)     (c) 

Figure 1.Semi-Controlled Crosswalk 

(a) Sign at Semi-Controlled Crosswalk. (MUTCD, 2009) 

(b) One-way North University Street at Second Street, 2017 (Jon D. Fricker) 

(c) Two-way North University Street at Second Street, 2018. (Google Maps) 
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1.2. Study Objective and Research Questions 

Video recordings at crosswalks were created, making possible analyses that not only supplement gap 

acceptance methods to model pedestrian behavior, but also analyze factors that influence driver decisions. 

The primary objective of this project is to establish a framework for investigating pedestrian-motorist non-

verbal “negotiations” at semi-controlled locations. This research focuses on the crosswalks on North 

University Street at Second Street (Figure 1(b) and (c)) on the Purdue University campus. This location 

was chosen because (1) it has a variety of crossing conditions and (2) it was converted from a one-way 

street in 2017 to two-way operation in 2018. Having a video record of pedestrian-motorist interactions 

permitted a detailed examination of those interactions. Furthermore, the change from one-way traffic to 

two-way traffic provided a rare opportunity to study the behavior of a similar population of pedestrians and 

motorists at a location that underwent a significant change. In this study, four primary research questions 

were pursued: 

1. Which factors can describe and explain the pedestrian-motorist interactions at semi-controlled 

crossing locations? 

2. How will the pedestrian-motorist interaction change if a one-way street is changed to two-way 

operation? 

3. Which characteristics will determine how long a pedestrian waits at a semi-controlled crossing 

location? 

4. How can pedestrian-vehicle interaction and pedestrian waiting behavior at semi-controlled 

crossing locations be modeled? 

10 



 

 

  

  

      

      

      

          

     

          

     

         

         

        

         

 

     

      

   

          

        

 

     

        

    

 

  

 

       

        

   

    

      

        

       

    

 

2. REVIEW OF LITERATURE 

2.1. Pedestrian Crossing Behavior 

Gap acceptance theory has been commonly used to model pedestrian decision-making. Probability-based 

approaches and modeling approaches are two main forms of pedestrian gap acceptance studies. Sun et al. 

(2002) proposed a Pedestrian Gap Acceptance method to model pedestrian decision strategies. They 

considered the probability of accepting a gap as a random variable that was obtained by fitting distributions 

to field data. Zhuang and Wu (2011) used statistical methods to analyze pedestrian crossing patterns (eye 

contact and running) and used gap acceptance models to describe pedestrian crossing behaviors at 

unsignalized crosswalks in China. Yannis et al. (2013) also employed a probability-based approach 

(lognormal regression) to test pedestrian gap acceptance in front of approaching vehicles at mid-block 

crossings. A binary logit model was used to explore the effect of gaps and other related parameters that 

affected pedestrian decision strategies. Kadali et al. (2014) compared the effectiveness of a non-linear 

model (artificial neural network) with a linear model (multivariate regression) in establishing a relationship 

between pedestrian gap acceptance behavior and explanatory factors. 

These studies listed above were primarily based on pedestrian gap acceptance behavior. However, 

gap acceptance theory has some limitations and may be inadequate to explain pedestrian crossing behavior. 

Some researchers have explored the family of discrete choice models to describe pedestrian crossing 

strategies. Himanen and Kumala (1988) developed a multinomial logit model to interpret the “negotiations” 
between drivers and pedestrians on crosswalks. Papadimitriou et al. (2012, 2016) designed surveys to 

investigate the impact of human factors on pedestrian crossing decisions by means of principal component 

analysis. Furthermore, a theoretical framework to model pedestrian crossing decision making process in 

urban trips was proposed via different discrete choice models. Lord et al. (2018) designed a questionnaire 

to understand the relationships between crossing strategies and the perceptions of the elderly, and logistic 

regression models were applied to explain the observed behaviors. 

2.2. Driver Yielding Behavior 

Discrete choice models have been widely used to analyze driver behavior, considering several explanatory 

parameters under different traffic or concurrent conditions at unsignalized crosswalks. Schroeder and 

Rouphail (2010, 2013) used logistic regression to predict driver yielding behavior at “semi-controlled” 
crosswalks and roundabouts based on vehicle dynamics, pedestrian characteristics, and environmental 

conditions. Sucha et al. (2017) studied the communications between pedestrians and drivers with respect to 

physical gestures (waving and eye contact), then took advantage of logistic regression to explore factors 

that had an influence on driver yielding behavior. Cloutier et al. (2018) applied a mixed-effects logit model 

to evaluate factors related to the likelihood of interactions between pedestrians and motorists. Other 

researchers explored game theory to explain the interactions between pedestrians and vehicles (Guan et al., 

2016; Bjørnskau, 2017; Camara et al., 2018). 
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2.3. Pedestrian Wait Behavior 

Recently, researchers also considered pedestrian wait time as one of the most important performance 

metrics in pedestrian-motorist interaction. Survival models have been used in transportation studies, 

especially for travel time and wait time, because of their flexibility in dealing with duration-based data 

(Washington et al., 2010). Nonparametric, semi-parametric and fully parametric survival models have been 

utilized to explore the effects of human factors on pedestrian waiting behavior. The Kaplan-Meier estimator 

(Kaplan and Meier, 1958) and the Lee-Carter method (Lee and Carter, 1992) are two prevailing approaches 

for non-parametric survival models, which provide practical estimates of survival probabilities and a raw 

graphical representation of the survival distribution (Washington et al., 2010). 

In transportation studies, the nonparametric Kaplan–Meier estimator was widely applied to 

investigate pedestrian wait duration before making unsafe crossings at signalized intersections (Tiwari et 

al. 2007; Guo et al, 2011). Cox (1972) developed a semi-parametric survival model duration model that 

included the effects of covariates. Guo et al. (2011) applied the semi-parametric Cox proportional hazard 

model to analyze influences of personal characteristics and external environment on pedestrian wait 

duration at signalized intersections in China based on both legal and illegal crossings. Instead of non-

parametric and semi-parametric models, fully parametric models were developed by applying alternative 

statistical distributions for the baseline hazard function. Fully-parametric models are recently popular 

because their capacities of fitting different types of baseline hazard functions. Guo et al. (2012) further 

extended their previous research by applying both nonparametric and fully parametric models to explore 

the effects of human factors on pedestrian waiting behavior at signalized intersections. Li (2013) focused 

on pedestrian wait time at signalized intersections, and U-shaped distribution of pedestrian wait time was 

found. Yang et al. (2015) proposed hazard-based duration approach to study the wait time for cyclists and 

electronic bike riders. 

There has been research on how long a pedestrian will wait at unsignalized crosswalks (Hamed, 

2001). How long a pedestrian decides to wait reflects how safe he/she perceives it is to cross the roadway. 

Pedestrians may feel unsafe and tend to wait longer when motorists exhibit aggressive driving behaviors. 

An investigation of pedestrian crossing behaviors and wait durations at such locations can be useful in 

developing policies and control strategies to enhance a pedestrian’s perceived safety, reduce pedestrian 
delay, and improve the level of service (LOS) of a unsignalized intersections. 

Pedestrian waiting behavior consists of not only a single event, but also recurrent events. Survival 

models have limitations in dealing with recurrent events in a dataset. Traditional survival models consider 

only the first event as the critical event. However, the first event analysis only considers the first event, 

while the subsequent events are ignored. Secondly, the repeated events are treated as identical treatments, 

which should be modeled differently.   

The Anderson-Gill (AG) model (Andersen and Gill, 1982) extended the Cox model to handle 

recurrent events by applying a counting process. They applied a baseline hazard function to all events. The 

subject of interest was the number of repeated events, given a specific period. The AG model is widely used 

in medical science, but it has a strong proportional odds assumption that, in practice, is difficult to be 

satisfied. Prentice, Williams, and Peterson (PWP) (1981) further recurrent events regression analysis by 

stratifying the events as ordered series, which allowed separate baseline hazard functions and coefficients 

to vary across events. Wei, Lin and Weissfeld (1989) also developed a model for a repeated events 
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modeling approach. However, this model is less efficient than PWP, due to its complicated nature. 

Although, AG, PWP and WLW are three classic models that have been widely investigated in the repeated 

events analysis, these three models focused only on the probability of occurrence, rather than the transition 

process between repeated events. Multi-State Models would be appropriate alternatives for recurrent events 

analysis. 

There are three main research gaps in the existing research literature concerning pedestrian-

motorist interaction. First, gap acceptance theory has been the prevailing method to analyze pedestrian 

behavior, but it may not be adequate at semi-controlled or controlled locations, where pedestrians can assert 

the priority to cross. Second, most research has studied either pedestrian behavior or motorist behavior 

separately. The research questions in our study call for an integrated framework that considers the potential 

relationships between pedestrian behavior and motorist behavior. Finally, the existing literature shows that 

survival models have the potential to model pedestrian waiting behavior at unsignalized semi-controlled 

crosswalks as a time-to-first-event analysis. Additionally, multi-state models can accommodate the 

dynamic modeling of pedestrian waiting behavior as recurrent event analysis. In the following sections, 

both time-to-first-event approach and recurrent events modeling approach are discussed. 
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3. RESEARCH METHODOLOGY 

3.1. Study Site Description 

North University Street at Second Street 

North University Street, at the T intersection with Second Street, has two lanes, each 12 ft wide, with a 

speed limit of 25 miles/h. The two crosswalks are used by students and staff walking between central 

campus to the east and parking facilities and residences to the west. The first set of videos were made in 

Spring 2017, when North University Street was a one-way northbound street. By the time the second set of 

videos were made in Spring 2018, the streets had been converted to two-way operation. This conversion 

provided a rare opportunity to study pedestrian-motorist interaction at the same site under different 

conditions. The two sets of video recordings were made at four different time periods (7:40 - 8:20; 12:40 -

13:25; 13:20 - 14:00; 16:20 - 17:00), when moderate traffic volumes and pedestrian flows were observed. 

The authors recorded approximately 3 hours of video for each set, resulting in a total of 3400 pedestrian-

motorist interactions. 

3.2. Definition 

3.2.1. Interaction 

The time-synchronized videos were processed in the laboratory. Interaction-based data were extracted to 

support the development of statistical models to investigate the “negotiation” between pedestrian and 
motorist. In this study, we define the interaction between pedestrian and motorist as the behavior of either 

party when in the area of influence of the other. The area of influence is defined by a vehicle being close 

enough to the crosswalk to affect the pedestrian’s crossing decision. We assume (based on behavior seen 

in the video) that pedestrians make their crossing decisions within the curb area (within 2 meters of the 

street).  From our observations, most pedestrians take a definite look for vehicles within the curb area, and 

most pedestrians wait within the curb area if drivers do not give an indication of yielding to them. Based 

on situations seen in the video recordings, an interaction can happen in several ways (Fricker and Zhang, 

2019): 

1. A pedestrian arrives at the curb and crosses immediately (without delay) while a vehicle 

accelerates, slows down or stops to avoid a conflict. 

2. A pedestrian arrives at the curb and slows down or stops, but a vehicle slows down or stops to 

yield to the pedestrian. 

3. A pedestrian arrives at the curb and slows down or stops, while a vehicle slows down, but does 

not yield to the pedestrian. 

4. A pedestrian arrives at the curb and slows down or stops, while a vehicle keeps a constant speed 

or accelerates, not yielding to pedestrian. 

An interaction does not occur if: 

5. A pedestrian arrives at the curb area, but there is no vehicle close enough to the crosswalk to 

affect the pedestrian’s crossing decision. 
6. A vehicle approaches the crosswalk, but there is no pedestrian present who is attempting to 

cross. 
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3.2.2. First Event & Critical Event 

Based on the definition of interaction, we aimed to investigate pedestrian wait time when pedestrian-

motorist interactions happen. A pedestrian can interact with either one vehicle or multiple vehicles, so that 

the pedestrian wait time dataset is mixed with single interaction events and recurrent interaction events. In 

survival models, the first event was considered as a “critical event”, because it had greater impact on the 
pedestrian’s crossing decision than the other vehicle(s) did. To investigate the impacts of critical vehicles 

on pedestrian behavior, we coded information for the critical vehicle: vehicle type, driving in the near or 

far lane, distance to pedestrian, and approach speed at the time when pedestrian reaches the curb. 

3.2.3. Recurrent Events 

Multi-state Semi-Markov models allow the estimation of the instantaneous impact of factors on the 

probability of transition from different states. By applying multi-state Markov model, we modeled 

transitions in Figure 2 in terms of three states: 

1. A pedestrian reaches the curb area as a vehicle approaches, so that an interaction occurs. 

2. Pedestrian rejects the lag (and, if necessary, subsequent gaps).  

3. Pedestrian accepts the lag (or gap) and crosses the street. 

The potential transition for this model is defined as: 

• Transition 1-3: accept the lag directly (vehicle yields). 

• Transition 1-2: reject the lag and await recurrent gaps (vehicle fails to yield). 

• Transition 2-2: reject following gaps. (This transition is not considered in this thesis) 

• Transition 2-3: accept a subsequent gap. 

A pedestrian who rejects a lag (1-2) would not be considered for Transition 1-3. In contrast, an 

individual whose first transition was 1-3, is considered simultaneously with the transition as 1-2. 

Figure 2.Multi-State Framework for Pedestrian Waiting Behavior (Zhang, 2019) 
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4. PEDESTRIAN-VEHICLE INTERACTION 

4.1. Explanatory Variables 

In order to explore pedestrian-vehicle interaction, all explanatory variables, including pedestrian 

characteristics and dynamics, vehicle dynamics, and environmental conditions are documented in Table 1. 

Whenever a pedestrian entered the curb area while a motorist was present in the area of influence, values 

for all the variables listed in Table 1 were manually recorded. For Hesitation parameter, the 75% percentile 
of pedestrian wait time for non-hesitation behavior is 1.57s (one-way) while the 25% percentile pedestrian 
wait time for hesitation behavior is 1.735s. The number for two-way case is 1.80s and 2.51s separately. We 
re-examine the 25% for both Hesitation and Non-hesitation behavior time after time through watching the 
videos. For CloseFollow parameter, we define that the object vehicle has close follower (CloseFollow =1), 
if the vehicle has a follower at a short headway of approximately 2-4 seconds, which has been defined 
similarly in former research literature (Schroeder and Rouphail, 2011). 

4.1.1. Pedestrian Behavior 

Based on the recorded interactions between pedestrians and motorists, a predictive model of pedestrian 

crossing behavior might be developed. There are two potential outcomes that describe pedestrian behavior: 

• Pedestrian Crosses (Y=1): the motorist in the interacted vehicle provides an opportunity for the 

pedestrian to cross. 

• Pedestrian Yields (Y=0): a pedestrian offers the motorist an opportunity to pass through the 

crosswalk first in an interaction. 

The variables that seemed appropriate to use in a model of pedestrian behavior are indicated by 

check marks in the “Pedestrian Model” column of Table 1. 

4.1.2. Motorist Behavior 

Based on numerous recorded interactions, a driver’s likelihood to decelerate was determined to be a key 
factor in the negotiation between pedestrian and motorist. A driver’s likelihood to decelerate had better 
explanatory power than likelihood to yield, because, in an interaction, a motorist could slow down initially, 

but have the pedestrian wave to the motorist to go first. In this situation, the driver’s action to decelerate is 
considered an important element of the interaction, even if the motorist did not eventually yield to the 

pedestrian. Consequently, by assigning levels of deceleration to each motorist, the potential outcomes for 

a motorist in an interaction are: 

• Level 1. Keep a constant speed or accelerate: a motorist does not slow down, and the interaction 

does not cause delays for the motorist. 

• Level 2. Decelerate but do not fully stop: a motorist decelerates during an interaction but does 

not fully stop and incurs some delay. 

• Level 3. A motorist stops to accommodate a pedestrian and incurs a delay that is usually greater 

than in Level 2. 
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Table 1.Explanatory Variables 

Parameters Variable Description Value Pedestrian 
Model 

Motorist 

Model 

Pedestrian Characteristic and Dynamics 

GroupSize The number of pedestrians in the curb area, including the subject 

pedestrian 
Integer √ 

AgeRange Estimated age range for subject pedestrian(s) (1: 0-10; 2: 10-30; 3: 

30-50; and 4: >50). 
Indicators √ 

Sex Sex of subject pedestrian Male=1; 

Female=0 

√ √ 

Hesitation Does the pedestrian slow down or wait at curb? Y=1/N=0 √ √ 

Distraction Does a pedestrian approach and/or cross while using a cellphone or 
talking? 

Y=1/N=0 √ √ 

FlowWith The number of pedestrians already crossing in the crosswalk in the 
same direction when subject pedestrian arrives at curb area 

Integer √ 

FlowAgainst The number of pedestrians already crossing in the crosswalk in the 
opposite direction when subject pedestrian arrives at curb area 

Integer √ 

FlowOn Total number of pedestrians already crossing in the crosswalk when 
an interaction occurs (FlowWith + FlowAgainst). 

Integer √ 

SameDirec The number of pedestrians present in the curb area crossing in the 
same direction as the subject pedestrian 

Integer √ 

DiffDirec The number of pedestrians present in a curb area with crossing 
direction opposite of the subject pedestrian 

Integer √ 

PedWait Total number of pedestrians waiting in the curb areas when an 
interaction occurs (SameDirec + DiffDirec) 

Integer √ 

Vehicle Dynamics 

ApprSpeed The approach speed of interacted vehicles when a pedestrian enters 
the curb area. (mph) 

Float √ √ 

SlowsDown Does a vehicle slow down or stop on the approach to the crosswalk 
when a pedestrian enters the curb area? 

Y=1/N=0 √ 

CloseFollow Does the interacted vehicle have a close follower when an interaction 
occurs? 

Y=1/N=0 √ √ 

AdjVeh Is a vehicle already present in the adjacent lane when a motorist 
begins to interact with a pedestrian? 

Y=1/N=0 √ √ 

Environmental Characteristics 

Distance The distance of interacted vehicle(s) to subject pedestrians when 
interaction begins. (in ft.) 

Float √ √ 

NoF Is pedestrian entering curb area on the near side or far side of the 
approaching vehicle's lane? 

Near=0; 
Far=1 

√ √ 

Response Behavior 

Pedestrian 
Outcomes 

Cross: Y = 1; Wait/Yield: Y = 0 Indicators √ 

Vehicle 
Response 

Level of vehicle deceleration when pedestrians enter crosswalks 

(3 = stops; 2 = slows down; 1 = Does not slow down). 
Indicators √ 
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4.2. Descriptive Statistics 

We examined descriptive statistics for general trends in the data. In videos of the one-way University 

Street, there were 1,759 interactions involving 1,133 pedestrians and 498 motorists. It was observed that 

some pedestrians interacted with more than one motorist, and vice versa. Of the total interactions, 1,240 

(70.5 percent) resulted in pedestrians crossing, while 519 (29.5 percent) of total interactions were of the 

“Pedestrian Yield to Motorist” type. In 993 out of 1,759 cases (56.5 percent), motorists chose to slow down 

or stop for pedestrians.  When University Street was in two-way operation, the number of interactions was 

1,574 (involving 933 pedestrians and 506 motorists). Of the total interactions, 1,061 (67.4 percent) had 

pedestrians crossing, while 513 (32.3 percent) of total interactions were of the “Pedestrian Yield to 
Motorist” type. Moreover, in 1,005 out of 1,574 cases (63.9 percent), motorists chose to slow down or stop 
for pedestrians during interactions on the two-way street. 

In Table 2, descriptive statistics of all explanatory variables are shown. The asterisks in the “Mean” 
columns indicate the level of significance of the difference between the mean value of variables for one-

way operation and two-way operation, found using t tests. Overall, the data showed a significantly higher 

percent of pedestrians hesitating (Hesitation, 54.9%) on the one-way street than with two-way traffic 

(49.9%). In one-way cases, 29.7% of vehicles have a vehicle following closely behind (CloseFollow) when 

they are involved in an interaction. However, the value of CloseFollow for two-way streets is 50.6%. Also, 

in one-way cases, 43.4% of vehicles arrived at the study area with a vehicle present in the adjacent lane. 

However, this number for the two-way street is 52.1%. The average value of the distance from vehicle to 

crosswalk is 74.6 ft. on the one-way street, which is significantly different from the two-way case (64.7 ft). 

Table 2.Descriptive Statistics 

Variables One-way Two-way 

Mean Std.Dev. Mean Std.Dev. 

GroupSize 2.53*** 2.331 2.054*** 1.483 

AgeRange 2.193*** 0.425 2.321*** 0.542 

Sex 0.429* 0.495 0.471* 0.499 

Hesitation 0.549** 0.498 0.499** 0.5 

Distraction 0.146 0.353 0.163 0.37 

FlowWith 1.229 2.049 1.151 1.847 

FlowAgainst 0.875 1.581 0.792 1.607 

FlowOn 2.103 3.015 1.943 2.8 

SameDirec 1.017 1.402 0.931 1.204 

DiffDirec 0.629** 1.123 0.525** 1.003 

PedWait 1.646 2.005 1.457 1.725 

AppSpeed 8.543 6.939 8.355 7.794 

SlowsDown 0.565*** 0.496 0.639*** 0.481 

CloseFollow 0.297*** 0.457 0.506*** 0.5 

AdjVeh 0.434*** 0.496 0.521*** 0.5 

Distance 74.592*** 54.729 64.673*** 49.12 

NoF 1.505 0.5 1.502 0.5 

Pedestrian Outcomes 0.705 0.456 0.674 0.469 

Vehicle Response 1.851** 0.837 1.945** 0.812 

* p<.05; ** p<.01; *** p<.001 
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4.3. Modeling Approach 

4.3.1. Pedestrian Model 

A pedestrian’s Cross or Yield behavior has a binary outcome: Cross (Y=1) or Yield (Y=0). Commonly, a 
binary logistic regression model is applied to estimate the probability that a particular choice happened, 

based on a series of explanatory variables. Using this method, a linear model was built with explanatory 

variables by transforming the outcomes into Prob{Y=1}. The logistic regression model assumes that, for 

every explanatory property (Harrell, 2015), 

1

1 ( 1)
logit( 1| ) log

( 1)

I

i i

i

P Y
Y X X C

P Y


=

 − =
= = = + 

= 
 (1) 

where C is the intercept and 𝛽𝑖 is the change in the log odds per unit change in 𝑋𝑖 , while all other variables 

are unchanged. Equation (2) can be used to describe the correlates between odds (Y) and variables (Harrell, 

2015), 

odds( 1| ) exp( )Y X X= = (2) 

The regression parameters can also be written in terms of odds ratios. The odds that 𝑌 = 1 when 

𝑋𝑗 is increased by d, divided by the odds at 𝑋𝑗 is 
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The mixed effects logit model has been widely used in transportation safety research due to its 

flexibility in model structure. Compared with binary logistic regression, the mixed-effects logit model 

considers the probability as the integral of the standard logit model over a density distribution of a parameter 

(Ye et al., 2014). The mixed effects logit model can be written as: 

exp( )
( 1) ( | )
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k k

k kk
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P Y f d
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+
= =

+
(4) 

The θs in the model are normally distributed in both one-way case and two-way case. Estimated 

values are shown in Table 3. Normally, the mixed effects logit model is compared with binary logistic 

regression together and AIC is a critical indicator for model selection, which balance the fitness and model 

complexity. The AIC can be expressed as (Akaike, 1987): 

2ln(likelihood) 2AIC k= − + (5) 

where k is the number of parameters. In this part of the study, both binary logistic regression and 

mixed effects logit model were tried. The model that best represented the data was chosen based on the 

AIC. The model results are shown in Table 3. 
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Table 3 Binary Logistic Regression Results for Pedestrian Models 

Variables One-way Two-way Interacted Coefficients of 

Combined Data 

Logistic 

Model 

Mixed-

Effects Logit 

Logistic 

Model 

Mixed-

Effects Logit 

Logistic 

Model 

Mixed-

Effects Logit 

GroupSize — — 0.443** 0.452** 0.424* 0.424* 

AgeRange — — — — — — 

Sex — — — — — — 

Hesitation -4.767*** -7.878*** -3.699*** -3.788*** — — 

Distraction — — — — — — 

FlowWith 0.331*** 0.522** — — -0.456*** -0.573*** 

FlowAgainst 0.28** 0.425* 0.227* 0.232* — — 

SameDirec — — — — — — 

DiffDirec — — 0.384** 0.391** — — 

AppSpeed -0.147*** -0.224*** -0.111*** -0.114*** — — 

SlowsDown 2.593*** 4.352*** 3.03*** 3.091*** — — 

CloseFollow — — — — — — 

AdjVeh -0.546** -1.033** — — 0.634* 0.865* 

Distance 0.042*** 0.069*** 0.036*** 0.036*** — — 

NoF -0.689*** -0.932** -0.65** -0.665** — — 

Constant 4.604*** 6.647*** — — 3.209*** 3.972*** 

Log 

Likelihood 

-336.817 -320.589 -328.075 -328.008 -658.987 -648.043 

θ - Esti: 2.750 

std:  0.508 

- Esti: 0.0025 

std:  3.806 

- Esti: 1.47 

std:   0.253 

AIC 693.6333 663.1773 676.1501 678.0157 1383.973 1364.087 

BIC 748.3583 723.3748 729.7638 736.9908 1585.657 1571.882 

Pseudo R2 0.6843 - 0.6698 - 0.6805 -

Observations 1759 1574 3333 

* p < 0.05; ** p < 0.01; *** p < 0.001 
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4.3.2. Pedestrian Model Discussion 

From Table 3, it can be seen that significant variables were estimated similarly in both models. For one-

way data, mixed logit works slightly better based on the AIC and BIC. However, for two-way operation, 

binary logistic regression exhibits superior performance. Due to the similarity of results from two models, 

to avoid confusion, we mainly discuss results and findings based on the binary logistic regression model. 

The significant variables in the logistic regression model (Table 3) suggest that, in a pedestrian-motorist 

interaction, pedestrians are more likely to decide to cross under the following conditions: 

a. If a pedestrian is assertive without hesitation (Hesitation). Pedestrian-motorist interactions were 

compared with only the Hesitation variable changing, while keeping other variables equal to their 

average values. If a pedestrian slows down at the curb while interacting with a motorist, the 

coefficient indicates that the probability of pedestrian crossing with Hesitation = 1 is, 

,1

1
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The probability of a pedestrian crossing under the same conditions, but with Hesitation = 0, is 
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b. If a driver decelerates (SlowsDown). If a driver slows down during an interaction, the probability 

of a pedestrian crossing is 98.4%, while the probability for a non-slowing down event is 81.9%. 

This is a clear indication of a motorist yielding to a pedestrian during the interaction. The effects 

of the Hesitation and SlowsDown variables are shown in Figure 3 in terms of Distance. 
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Figure 3.Effects of Hesitation and Slow Down on Pedestrian Crossing Behavior 

c. If a car is approaching at a lower speed (AppSpeed). If the approach speed of a vehicle is 10 mph, 

the probability of pedestrian crossing is 71%, while the probabilities are 36.0% for 20 mph and 

11.4% for 30 mph. Other studies (e.g., Brüde and Jörgen, 1993; Leaf and Preusser, 2006) found 

similar relationships. 

d. If the distance (in ft) between a pedestrian and motorist is great (Distance). If the interaction 

distance between vehicle and object crosswalk is 20 ft., the probability of pedestrian crossing is 

66.5%, while the probabilities are 91.4% for 60 ft. and 98.3% for 100ft. The effects of Distance 

and AppSpeed variables can be seen in Figure 4. 

Figure 4.Effects of Distance and Speed on Pedestrian Crossing Behavior 
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e. If there is no vehicle in the adjacent lane (AdjVeh).  If pedestrian has to interact with two vehicles 

in different lanes, the probability of a pedestrian crossing is 93.5%, compared with the case in 

which there is no adjacent vehicle (object pedestrian interacts with only one vehicle in any lane) 

(96.1%). Schroeder and Rouphail (2011) found a similar relationship. 

f. If a vehicle is in the near lane (NoF=0). The probability of a pedestrian deciding to cross is 96.5% 

when a far lane interaction occurs, to 98.2%with a near-lane interaction. A plausible explanation is 

that, all else being equal, a pedestrian is more confident when crossing before a vehicle in the near 

lane arrives, compared with the longer crossing distance to the far lane and the risk of being trapped 

in the crosswalk while waiting for a far lane vehicle to yield or proceed. Effects of AdjVeh and 

NoF variables can be seen in Figure 5 in terms of Distance. 

Figure 5.Effects of AdjVeh and NoF on Pedestrian Crossing Behavior 

g. If other pedestrians are using the crosswalk (FlowWith and FlowAgainst) (Figure 6). 

Figure 6.Effects of FlowWith and FlowAgainst on Pedestrian Crossing Behavior 
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h. If other pedestrians are using the crosswalk (FlowWith and FlowAgainst). The effects are shown 

in Figure 6. 

Some of the findings in this study are similar to individual findings found in other studies; other 

findings in this study represent new contributions. All of the findings are plausible. This gives the model 

credibility, subject to a more careful look at the model’s values, after examining related models. 

Based on the data for two-way University Street, the binary logistic regression model (Table 3) 

suggests that, in a pedestrian-motorist interaction, pedestrians are more likely to cross … 

i. if pedestrian acts without hesitation (Hesitation=0). 

j. if a driver decelerates (SlowsDown=1). See Figure 7. 

k. if a vehicle approaches at a lower speed (ApprSpeed). 

l. if the distance between a pedestrian and motorist is greater (Distance). See Figure 8. 

m. if the other pedestrians are crossing in the same direction as the pedestrian being observed 

(FlowWith). 

n. if an interacted vehicle is in the near lane (NoF=0). 

o. if there is a pedestrian waiting on the opposite side of the street (DiffDirec) See Figure 9.  

p. if a pedestrian is grouped with other people (GroupSize) See Figure 9.  

Figure 7.Effects of Hesitation and SlowsDown on Pedestrian Crossing Behavior 
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Figure 8.Effects of Distance and Speed on Pedestrian Crossing Behavior 

Figure 9.Effects of DiffDirec and GroupSize Variables on Pedestrian Crossing Behavior 
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After University Street was converted to two-way operation, fewer parameters were found to be 

statistically significant. The first four variables listed above for two-way operation were also significant for 

the one-way data.  This could be interpreted in the same way as in one-way case. 

In an attempt to analyze the effect of the change on University Street from one-way to two-way, 

the data were combined and a group dummy variable (one-way case = 0; two-way case = 1) was introduced. 

The binary logit regression was run on the combined data, using an interaction term that pairs group dummy 

variables with independent variables, as shown in Equation 7 (Cross Validate, 2018): 

0 1 2 3logit( 1| ) *indepVar+ *groupDummy*indepVar+ *groupDummy= = +Y X     (7) 

Where: 

• 𝛽1 is the vector of coefficients for the one-way case. 

• 𝛽2 is the vector that measures the difference in the coefficients between the two separate models 

(one-way and two-way). 

• 𝛽3 shows the differences in intercepts between the separate models. 

The second rightmost column in Table 3 shows the results for the coefficients of interest in the 

binary logistic regression model and represents elements of β2 in Equation 7. Consequently, one can test 

whether each element in β2 is significant, to show if the change from one-way to two-way has caused a 

significant change in the pedestrian crossing models. An example is that the DiffDirec estimated 

coefficients in one-way case is 0.133 with 95% confidence interval [-0.044450, 0.311147], while the 

number is 0.384** with 95% confidence interval [0.1317962, 0.6501222]. The 95% confidence interval for 

the estimated coefficients are overlapped so that in the second right most column in Table 3 is not reported 

as statistical significance. Other results show that: 

• The coefficient for pedestrian arriving group size (GroupSize) has changed significantly. In the 

one-way case, it was negative and not statistically significant; for two-way case, it is positive and 

statistically significant (0.424*** in Table 3). 

• There is a significant change in the effect of the FlowWith factor (-0.573*** in Table 3). In the 

one-way case, if there are already pedestrians in the crosswalk, pedestrians are more likely to cross. 

However, on a two-way street, the FlowWith factor had no significant impact on pedestrian 

crossing behavior. 

• The impact of the presence of an adjacent vehicle is significant in the one-way case, but disappears 

in the two-way case, because the coefficient changes significantly (-0.685** in the table). 

4.3.3. Motorist Model 

By state law, at a semi-controlled crossing, a motorist is supposed to yield to a pedestrian who is “within 
the crosswalk”. In both the one-way and two-way Pedestrian Model, a major factor in a pedestrian’s 
decision to cross was the deceleration of the vehicle(s) during an interaction. Whether a vehicle slows down 

is a vital factor to study in the negotiations between pedestrians and motorists. In this section, we focus on 

the parameters that may have significant impacts on drivers’ slowing down behavior. By assigning levels 

of deceleration intensity to each motorist (Level 1 – Motorist does not slow down; Level 2 -- Motorist slows 

down but does not stop; and Level 3 -- Motorist stops), an ordered logistic regression can be used to analyze 

the probability of a particular response level for a series of given parameters (Williams, 2016): 

26 



 

 

  

       

             

     

    

        

      

       

       

       

          

  

  

        

            

  

 

  

        

      

                  

       

       

        

       

       

        

        

       

       

       

       

         

      

     

    

           

 

exp( )
Prob( ) ( ) ,    1,2,... 1

1 exp( )

+
 = = = −

+ +

j i j

i

j i j

X
Y j O X j M

X

 


 
(8) 

where Yi is the response variable (motorist action in this application), M denotes the number of ordinal 

dependent variables (M = 3 levels here), and βj are the same for all categories, but αj are not necessarily the 

same among categories. A critical assumption associated with the ordered logit model is the proportional 

odds assumption, which imposes the restriction that regression parameters (except constants) are the same 

across different dependent levels. However, for deceleration intensity, it is not clear whether distances 

between adjacent deceleration levels are equal. Considering that the proportional odds assumption may be 

violated by only a subset of variables, a generalized ordered logistic regression (GOLR) partial proportional 

odds model was adopted.  Compared with the ordered logistic regression model, the GOLR model relaxes 

the proportional odds assumptions for some explanatory variables, while maintaining them for the variables 

that satisfied the proportional odds assumption (Williams, 2016). The model could be further revised using 

Equation 9 as: 
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j i i j

i

j i i j

X X
Y j g X j M

X X

  


  
(9) 

where β1 is the vector of variables that are subject to the proportional odds assumption. Explanatory 

variables X2i that do not satisfy this assumption need the addition of coefficients β21 to relax the proportional 

odds assumption. The results are shown in Table 4. 

Table 4.Generalized Ordered Logistic Regression Model Results 

Variables One-way Two-way Tests of equality of 

Coefficients (p-value) Coefficient Between Coefficient Between 

1 and 2 2 and 3 1 and 2 2 and 3 1 and 2 2 and 3 

— — — — — — — 

Sex — — — — — — 

Distance — — 0.007*** — 0.0035** — 

FlowOn 0.137*** 0.137*** 0.101** 0.101** — — 

PedWait — — — — — — 

AppSpeed -0.304*** -1.248*** -0.302*** -0.933*** — — 

CloseFollow -0.355* -0.355* — — — — 

AdjVeh -0.569*** -0.569*** — — 0.0001*** 0.0001*** 

Hesitation -0.384* -0.384* -1.518*** — 0.0000*** 0.0098** 

Distraction — — 0.451* 0.451* — — 

NoF — — -0.3* -0.3* 0.0093** — 

Cutoffs 4.44*** 4.046*** 4.114*** 2.232*** — — 

Log Likelihood -784.588 -754.676 — — 

Pseudo R2 0.5855 0.5626 — 

Observations 1759 1574 — 

* p < 0.05; ** p < 0.01; *** p < 0.001; “— = not applicable” 
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In Table 4, the first column of coefficients can be interpreted in terms of Equation 9, where the 

dependent variable is recoded as Prob (Yi>1), which is equivalent to the probability that motorist 

deceleration Levels 2 and 3 occur, i.e., j>1.  The second column of coefficients can be interpreted in terms 

of Equation 9, where the dependent variable is recoded as Prob (Yi>2), which is equivalent to the probability 

that motorist deceleration Level 3 occurs (Williams, 2016). This model has been widely used in traffic crash 

analysis to analyze the relationship between the severity of injury and associated variables. Furthermore, 

in some literature (e.g., Wang et al., 2008; Michalaki et al., 2015), marginal effects were used to measure 

the effect that a change in an explanatory variable has on the predicted probability of a specific category.  

The marginal effects are shown in Table 5. 

Table 5.Marginal Effects 

Variables One-way Two-way 

Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 

Sex — — — — — — 

Distance — — — -0.0007*** 0.001*** -

FlowOn -0.0176*** 0.0146*** 0.003*** -0.0099** 0.0041** 0.0058** 

PedWait — — — — — — 

AppSpeed 0.0393*** -0.0115*** -0.0278*** 0.0296*** 0.0237*** -0.0533*** 

CloseFollow 0.0459* -0.038* -0.0079* — — — 

AdjVeh 0.0735*** -0.0609*** -0.0127*** — — — 

Hesitation 0.0496* -0.0411* -0.0085* 0.1488*** -0.1602*** — 

Distraction — — — -0.0442* 0.0184* 0.0258* 

NoF — — — 0.0294* -0.0123* -0.0171* 

* p<0.05; ** p<0.01; *** p<0.001; “— = not applicable” 

4.3.4. Motorist Model Discussion 

For University Street in its one-way operation, the generalized ordered logistic regression model suggests 

that, in a pedestrian-motorist interaction: 

• A motorist is more likely to slow down if the driver’s approach speed is lower. In the GOLR model, 
the coefficients for both Level 1 and Levels 2 and 3 are negative (-0.304 and -1.248) and marginal 

effects also suggest that a higher approach speed leads to a higher likelihood of non-slowing down 

behavior (0.0393*** in Table 5). 

• A driver is more likely to slow down if there are no other vehicles present in the adjacent lane 

(AdjVeh Coef. = -0.569; p-value = 0.000 in Table 4). Furthermore, the marginal effect of this 
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factor for Not Slowing Down (Level 1) is 0.0735*** in Table 5, which is a significant increase. 

This means that, for the one-way case, the behavior of a vehicle in the adjacent lane will cause 

significant effects on a motorist’s decision. 
• A motorist is less likely to decelerate if there is a close follower behind him/her (CloseFollow Coef. 

= -0.355* in Table 4). The marginal effects reflect that a driver will be more aggressive without 

slowing down (0.0459* in Table 5) and less likely to brake or stop (-0.038* and -0.0079* in Table 

5) if another driver closely follows him/her. 

• If a pedestrian slows down or stops at the curb during an interaction (Hesitation=1, Coef. = -

0.384***), the marginal effects indicate that a driver will be more likely to continue without 

slowing down (+0.0496*in Table 5) and less likely to slow down (-0.0411* in Table 5). 

• if an interaction occurs when there is a greater number of pedestrians already in the crosswalk 

(FlowOn), a driver is more likely to slow down (Coef. = 0.137*** in Table 4), because in Table 5, 

marginal effects indicate a positive impact on slowing down (0.0146**) and on stopping (0.003**), 

with negative impacts on non-deceleration (-0.0176***). It is intuitive that more pedestrians 

already in the crosswalk will lead to drivers slowing down. 

For two-way University Street, the model shows the same effects as in the one-way case for 

variables FlowOn, AppSpeed, and Hesitation.  Some other variables became significant. 

• For the NoF variables in Table 4, their coefficients are -0.3*, which means that the probability of a 

motorist slowing down is lower when the pedestrian is on the far curb (NoF=1), not the near curb, 

which is proved by the marginal effects (0.0294* for Level 1; -0.0123* for Level 2; and -0.0171* 

for Level 3 in Table 5). 

• Distance (Coef. Distance = 0.007*) has significant impact on the driver’s decision to slow down. 

With the increase of distance, the marginal effects for this parameter have a positive influence on 

a driver slowing down (0.001***) while having a negative effect on not-slowing down behavior 

(-0.0007***). 

• For the distraction variable (Distraction), a driver is more likely to decelerate if a pedestrian in the 

interaction uses a cellphone or talks to others (Distraction, Coef. = 0.451* in Table 4).  In Table 

5, the marginal effects for this parameter have a positive influence on a driver slowing down and 

stopping (0.0184* and 0.0258*), while having a negative effect on not-slowing down behavior (-

0.0442*). 

4.3.5. Summary 

As with the pedestrian model, we test whether the coefficients in the one-way and two-way cases are equal. 

The two rightmost columns in Table 4 show the p values for the hypothesis tests, which indicated that 

variables Hesitation, AdjVeh, NoF, and Distance change significantly. Meanwhile, compared with one-way 

street operation, some variables (CloseFollow and AdjVeh) were no longer significant. One interesting 

result is that, for one-way operation, driver behavior is influenced greatly by both pedestrian characteristics 

(Hesitation and FlowOn) and vehicle dynamics (AppSpeed, CloseFollow, and AdjVeh). For two-way 

operation, driver behavior is significantly determined by more pedestrian characteristics factors (Hesitation, 

Distraction, and FlowOn), fewer vehicle dynamics factors (AppSpeed) and more environmental 

characteristics factors (Distance and NoF), when an interaction occurs. 
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There exist limitations in the models. Endogeneity is introduced when we use SlowDown parameter 

in pedestrian model. Moreover, we explored the pedestrian and motorist behavior separately rather than 

study the complex game between pedestrian and motorist, which required a more complicated framework. 
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5. PEDESTRIAN WAIT TIME – SURVIVAL ANALYSIS 

5.1. Accelerated Failure Time (AFT) Model 

Based on the definition of interaction, we aimed to investigate pedestrian wait time when pedestrian-

motorist interactions happen. A pedestrian can interact with either one vehicle or multiple vehicles, so that 

the pedestrian wait time dataset is mixed with single interaction events and recurrent interaction events. In 

survival models, the first event was considered as a “critical event”, because it had greater impact on the 
pedestrian’s crossing decision than the other vehicle(s) did. The object vehicle occurring in the first event 
is defined as the critical vehicle. To investigate the impacts of critical vehicles on pedestrian behavior, we 

coded information for the critical vehicle: vehicle type, driving in the near or far lane, distance to pedestrian, 

and approach speed at the time when pedestrian reaches the curb, as listed in Table 6. 

Table 6 Explanatory Variables and Descriptive Statistics 

Variable Description 

Explanatory Variable 

Pedestrian Wait 

Time 

Duration (in seconds) between the time a pedestrian reached the curb area and the time the 

pedestrian started crossing (One-way: mean=2.67s, sd=2.61s; Two-way: mean=3.02s, sd=3.08s) 

Independent Variable 

Pedestrian characteristics 

Sex 1 if the pedestrian is Male (51.1%), 0 if the pedestrian is Female (48.9%). 

Estimated Age 

Category 

Young for pedestrians that appear to be younger than 30 years old (77%); Mid-age for pedestrians 

between 30 and 50 years old (21%); Elderly for pedestrians older than 50 years old (2%). 

Cellphone Indicator 1 if pedestrian is using cellphone when waiting at the curb (9%), 0 otherwise (91%). 

Talking Indicator 1 if pedestrian is talking to others when waiting at the curb (8.4%), 0 otherwise (91.6%). 

Traffic Condition 

Vehicle Arrival Rate Number of vehicles driving past the crosswalk per minute 

(mean=8.72 veh/min, sd=3.95 veh/min) 

Near Side Indicator 1 if the critical vehicle is in the near lane (53%), 0 if the critical vehicle is in the far lane (47%). 

Bus/Truck Indicator 1 if the critical vehicle is bus or large truck (16.7%), 0 otherwise (83.3%). 

Veh-to-Ped 

Distance 

Distance (in ft) between pedestrian and the first approaching vehicle (mean=61.8ft, sd=51.7ft). 

Approaching Speed Speed (ft/s) of the first approaching vehicle when the pedestrian arrives at the curb (mean=12.4ft/s, 

sd=11.2ft/s). 

Adjacent Vehicle 

Indicator 

1 if there is one or more vehicles presenting in the adjacent lane within the area of influence when 

the motorist begins to interact with a pedestrian (32.3%), 0 otherwise (67.7%). 

Vehicle Close 

Follower Indicator 

1 if there is at least one vehicle closely following the critical vehicle (31.9%), 0 otherwise (68.1%). 

Other Pedestrians 

Group Size Number of people in the pedestrian group (45.7% pedestrians came alone, 54.3% came in a group; 

mean=2.31, sd=2.03) 

Nr Ped Waiting Number of pedestrians waiting at the curb as a pedestrian arrives at the curb (52.8% cases of no 

pedestrians waiting, 47.2% cases of at least one pedestrian was waiting at the curb; mean=0.84, 

sd=1.21) 

Nr Ped Crossing Number of pedestrians crossing the street as a pedestrian arrives at the curb (52.8% cases of no 

pedestrians crossing, 47.2% cases of at least one pedestrian crossing in crosswalk; mean=1.27, 

sd=1.99) 

Note: mean=average value; sd=standard deviation 
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5.1.1. Log-Linear Model 

First, a multivariate model was developed to analyze the relationship between pedestrian wait time and 

explanatory variables. At semi-controlled locations, pedestrian wait time is always non-negative. As a 

result, we transform the pedestrian wait time into log format. The log-linear model is: 

0 ,log( ) *i k i k i

k

y x  


= + + (10) 

where yi is the wait time and 𝑥𝑖,𝑘 is the k-th variable for pedestrian i; 𝛽0 is the estimated constant; 𝛽𝑘 is the 

coefficient estimated for the k-th variable, and 𝜀𝑖 is the error term. 

5.1.2. AFT Model Structure 

Hazard-based duration models are widely used with duration-related datasets. Studies related to accident 

analysis (Nam and Mannering, 2000), travel activity behavior (Yang et al., 2015), and queueing theory 

usually applied hazard-based duration models due to their flexibility with time-dependent data. 

Duration analysis primarily focuses on the length of time that elapsed from the starting state of an 

event until the ending state of an event. (In this study, we call the event an interaction.) Duration analysis 

is also interested in the likelihood that an event would end in the next short period of time, given its current 

state (Nam and Mannering, 2000). The hazard function at time (t) can be expressed as a density function 

( )f t , and its cumulative distribution function ( )F t . 

'

0

( ) ( ) Pr( ) ( )
( ) lim

1 ( ) ( ) * ( ) ( )dt

f t f t t T t dt S t
h t

F t S t dt S t S t→

  +
= = = = −

−
(11) 

In this section, we discuss the fully parametric approach to investigate pedestrian waiting duration 

at semi-controlled locations. Different from non-parametric risk (hazard) functions, parametric functions 

need to be given a probability distribution ( )h t . Typical probability distributions such as exponential, 

Weibull, log-logistic, log-normal, or Gompertz were investigated as alternatives in fully parametric hazard-

based functions. The exponential distribution assumes that the hazard function is constant over time. 

Weibull or Gompertz distributions both assume that the hazard function is decreasing or increasing over 

time non-monotonically. The log-logistic distribution is a widely used probability distribution in hazard-

based duration analysis, because of its flexibility in dealing with non-monotonic relationships. Figure 3 

shows the matches between the empirical survival curves from the current data and the fitted curves using 

the candidate distributions. Log-logistic distribution and log-normal distribution were found to provide 

better fits among the candidate distributions. 

These candidate distributions were tested in the AFT model, and their model performances were 

compared using the Akaike information criterion (AIC). The AIC is an estimator of the relative quality of 

statistical models, which provides a means of model selection. The AIC can be calculated using Equation 

(13), which represents a trade-off between model fit and model complexity (Akaine, 1987): 

2*log( ) 2( )AIC likelihood p k= − + + (13) 
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A lower AIC value indicates a truly better description of the data. According to the estimation 

results of the developed AFT models, the log-logistic model was found to provide better model performance 

(lower AIC) than other distributions in modeling pedestrian wait time. The hazard function h(t), survival 

function S(t), and survival (wait) time T for a log-logistic AFT model are shown in Equations (14) to (17). 

Figure 10.Non-Parametric Survival Estimations and Fitted Distributions 
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(17) 

where 
1/

1
p

is estimated by covariates considered in the model. 
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5.2. Model Discussions 

The estimation results of the log-linear regression model and the survival models are presented in Table 7. 

The estimation results of the two models are mostly consistent with each other in terms of variable 

significance and sign consistency. The interpretation of the estimation results of the log-linear regression 

model is straightforward through the marginal effect: an influential variable with a positive sign indicates 

an increase on the wait time, meaning a one unit increase of an influential variable with coefficient βi leads 

to a βi*100 percent increase in pedestrian delay. For example, the coefficient estimated for Male is -0.0673, 

meaning that the wait duration of a male pedestrian is 6.73% shorter than the duration of a female 

pedestrian, when all other factors are the same. 

Table 7. Log-Linear Regression 

Log-Linear Model One-way Two-way 

Number of pedestrians 1132 obs 927 obs 

Explanatory Variable β t P-value β t P-value 

(Intercept) -0.3294 0.149 0.027* 0.69 0.1692 <0.001*** 

Sex - - - -0.0673 0.0383 0.079. 

Age 0.1844 0.0413 <0.001*** 0.0782 0.037 0.035* 

Distraction - - - 0.1409 0.0529 0.008** 

Group Size -0.0228 0.0958 0.017* -0.0495 0.0145 0.002** 

Near or Far Side - - - -0.0974 0.0389 0.012* 

Vehicle Type 0.1487 0.0413 <0.001*** - - -

Distance 0.0017 0.0011 0.1256 - - -

(Distance)^2 -1.87E-05 5.76E-06 0.0012** - - -

Approaching Speed 0.0226 0.0055 <0.001*** 0.0106 0.0056 0.056. 

(Approaching Speed)^2 -0.00047 0.0002 0.079. - - -

Adjacent Vehicle 0.2845 0.0416 <0.001*** 0.2345 0.0427 <0.001*** 

Close Follower 0.2751 0.0419 <0.001*** 0.1895 0.0149 <0.001*** 

Nr Ped. Waiting 0.0496 0.0113 <0.001*** - - -

Nr Ped. Crossing -0.0542 0.0071 <0.001*** -0.0541 0.0085 <0.001*** 

R^2 0.2418 0.1635 

F-statistic: 25.45 12.73 

Degree of freedom 11 10 

Significance < 2.2e-16 < 2.2e-16 

Signif. codes: ‘***’: 0.001; ‘**’: 0.01; ‘*’: 0.05; ‘.’: 0.1 
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Table 8. AFT Model Estimated Results 

AFT Model One-way Two-way 

Number of pedestrians 1132 observations 927 observations 

Explanatory Variable β Std.Err P-value β Std.Err P-value 

(Intercept) -0.294 0.174 0.09. 0.528 0.192 0.006** 

Sex - - - -0.0663 0.039 0.089. 

Age 0.199 0.0448 <0.001*** 0.09 0.0413 0.029* 

Distraction - - - 0.104 0.0563 0.065. 

Group Size - - - -0.0394 0.0148 0.008*** 

Near Side or Far Side - - - -0.104 0.0448 0.021* 

Vehicle Type 0.111 0.0611 0.07. - - -

Distance 0.00131 0.0012 0.287 - - -

(Distance)^2 -1.67E-05 5.88E-06 0.0046* - - -

Approaching Speed 0.024 0.00681 <0.001*** 0.0142 0.00637 0.025* 

(Approaching Speed)^2 -0.000363 0.00022 0.1000. - - -

Adjacent Vehicle 0.243 0.0602 <0.001*** 0.227 0.0504 <0.001*** 

Close Follower Indicator 0.214 0.059 <0.001*** 0.184 0.053 <0.001*** 

Nr Ped. Waiting 0.052 0.0129 <0.001*** - - -

Nr Ped. Crossing -0.0494 0.00765 <0.001*** -0.05 0.00871 <0.001*** 

Log Likelihood -1766.8 -1581.6 

Degree of freedom 11 10 

Significance < 2.2e-16 < 2.2e-16 

Signif. codes: ‘***’: 0.001; ‘**’: 0.01; ‘*’: 0.05; ‘.’: 0.1 

The log-linear and AFT models showed similar results. In the AFT framework, the exponential of 

the estimated coefficient is called the accelerated factor (AF), which measures, for each variable, the 

increased pedestrian delay associated with an increase in the value of that variable. For example, the 

exponential of a positive coefficient, such as Age Indicator in the one-way model, is AF = exp (0.199) = 

1.22, which means that with the increase of Age indicator by 1, it shows an increase of 22% probability of 

waiting. Conversely, the exponential of a negative coefficient, such as Group Size, is exp (-0.104) = 0.901. 

The interpretation is that a pedestrian is likely to wait about 0.901 times as long (9.9% shorter) when the 

group size increases by 1 person, while keeping all the other variables unchanged. Generally, a coefficient 

greater than zero (or, equivalently, an exponent parameter greater than 1.0) indicates that an increase in the 

explanatory variable results in increased pedestrian delay, and vice versa. 
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5.2.1. Before and After Studies 

5.2.1.1. Distance and Speed 

In both the regression model and the AFT duration model, the squared term of the vehicle-to-pedestrian 

distance and the squared term of vehicle speed were highly significant in the one-way case, indicating that 

there exists a non-monotonic relationship between pedestrian delay and the two variables. Figure 11 shows 

that pedestrian wait time is greatest when the interacted vehicle is 39 - 46 ft from the crosswalk, approaching 

at an average speed. The pedestrian wait time is smaller when the vehicle is closer than 39 - 46 ft, because 

the pedestrian is content to let the vehicle pass before crossing the street with increases as the speed 

increases and as the distance decreases only up to certain thresholds, after which the relationship becomes 

the opposite. Such a non-monotonic relationship (See Figure 11) has not been identified in past studies. 

However, only speed term showed significant impact on pedestrian waiting time in two-way 

operation. 

Figure 11.Relationships between Pedestrian Delay and Distance & Speed (One-Way Case) 

5.2.1.2. Pedestrian Characteristics 

Pedestrian Characteristics (Sex, Distraction) have significant impacts on pedestrian waiting behavior in the 

two-way case. Male showed significant lower waiting durations than females (See Figure 12). Moreover, 

distraction (Talking and Cellphone Using) will result in a longer waiting time (See Figure 12). 
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Figure 12.Effects of Pedestrian Characteristics (Two-Way) 

5.2.1.3. Environmental Factors 

The variables near side and far side showed significant impacts on pedestrian waiting durations in the two-

way case. If the interacted vehicle is in far lane, the model indicates that pedestrians will have a lower wait 

time. Furthermore, with the increase in group size, the subject pedestrian will wait less (See Figure 13). 

Figure 13.Effects of Environmental Factors (Two-Way) 
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Model Performance 

5.2.2. Mean Absolute Percentage Error (MAPE) 

To compare the model performance between the regression models and the AFT duration models, the mean 

absolute percentage error (MAPE) is used. The MAPE is a summary measure widely used for evaluating 

the accuracy of prediction results.  It can be calculated using Equation (18). 

1

1
MAPE

n i i

i
i

O P

n O=

−
=  (18) 

where iO is the observed waiting duration for the i-th pedestrian, iP is the predicted wait duration for the 

i-th pedestrian, and n is the number of pedestrians included in the model. 

A lower MAPE value indicates a higher accuracy of the prediction model. In this study, the MAPE 

value was calculated as 47.3% for the log-linear model and 37.6% for the log-logistic AFT duration model 

in the one-way case; 46.6% for the log-linear model and 36.4% for the log-logistic AFT duration model in 

the two-way case. In safety studies related to human factors, the MAPE value range from 21% to 50% is at 

a reasonably accuracy level (Chung, 2010). 

5.2.3. Error Tolerance 

Another measure of model prediction accuracy used in duration modeling is related to a certain tolerance 

of the actual durations (Chung, 2010; Yang et al., 2015). In this part, we defined the percentage error as the 

percentage difference between the observed and predicted value. The prediction accuracy under certain 

error tolerance is calculated as the ratio of the predicted durations with percent errors smaller than the given 

error tolerance to the total number of prediction points. Figure 14 presents the prediction accuracy under 

error tolerance from 0% to 100% for the two estimation models and in the one-way and two-way cases. 

The plots show that the log-logistic AFT duration model outperformed the log-linear model at each 

tolerance level in term of the prediction accuracy for both the one-way and two-way cases. 

Figure 14.Prediction Accuracy under Different Error Tolerance 
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Summary 

In this chapter, we used the first event analysis to estimate the pedestrian waiting behavior. The occurrence 

of the first event (interaction) is considered to have the most critical impact on pedestrian wait durations. 

Log-linear model and AFT model were utilized to investigate the effects of covariates on pedestrian wait 

behavior. Based on the results, parameters distance and speed show non-monotone relationship on 

pedestrian wait durations in one-way case. The peak values for distance (39.4 ft in AFT model and 46.8 ft 

in Log-Linear) and speed (33 ft/s in AFT model and 37 ft/s in Log-Linear) are shown to cause the longest 

delay on pedestrian at semi-controlled crosswalks. For example, when a vehicle too close to yield, it will 

not necessarily cause the confusion because pedestrian will let vehicle go first then cross. When a vehicle 

is too far, there’s no need for pedestrian to hesitate and no confusion arises. The most confusing part is that, 

within a certain distance, pedestrian feels unsafe and the car slows down to yield. Both parties are both 

delayed. These phenomena are common in unsignalized crosswalks and these results have not been 

investigated by existing literature. In future studies, we should not only consider strategies that can increase 

the vehicle yielding rate, but also find strategies to reduce the delay in terms of control speed and interacted 

distance. One typical strategy is to force vehicle brake at a certain distance if the pedestrian flow is really 

high while if pedestrian flow is not high, then let vehicles cross as normal. 

On the two-way street, pedestrian a less likely to wait more when an object vehicle is on the far 

side suggested by models. Based on our observations, compared with one-way operation, pedestrians have 

different crossing strategies in two-way street because they have to care vehicles in different lanes from 

different sides. If the object vehicle is in the far lane, pedestrians are assertive to cross even if the far lane 

vehicle does not yield. Interactions between pedestrians and far-lane vehicles may result in a lower post 

encroachment time (PET) so that some dangerous cases are likely to occur in two-way street unsignalized 

crosswalks. Conflict analysis can be done to examine the results in the future. 
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6. PEDESTRIAN WAIT TIME – MARKOVIAN APPROACH 

6.1. Model Formulation 

Consider a Markov renewal process (Jn, Tn), where T0 < T1 < … < Tn < ∞ are the successive times of entry 

to states J0, J1, …, Jn. If 1n n nS T T −= − is the sojourn time (gap time or lag time), the Markov renewal kernel 

( )hjQ d is a cumulative distribution function of time: 

1 1 0 1 1 2

1 1

( ) ( ,  | , ,..., ,  , ,..., )

          ( ,  | )

hj n n n n

n n n

Q d P J j S d J J J h S S S

P J j S d J h

+ +

+ +

= =  =

= =  =
(19) 

J0, J1,…, Jn is an embedded homogeneous Markov chain taking values in a finite state space with 

transition probability: 

1( | ) lim ( ),  hj n n t hjp P J j J h Q t n N+ →= = = =  (20) 

We define the distribution function of the sojourn time in state h by: 

1
( ),    

s

h hjj
H Q t t

=
=   (21) 

The probability distribution function of sojourn time (gap time or lag time), through the transition 

probabilities of the embedded Markov chain in terms of conditional probability, is: 

1 1

( )
( ) ( | , )

hj

hj n n n

hj

Q d
F d P S d J j J h

p
+ +=  = = = (22) 

( )hjF d is a cumulative probability distribution and is called a sojourn time in state h if the next 

state will be j. Based on equation (22), we can write the probability density function as ( )hjf d . The hazard 

function Hhj of ( )hjF d will be: 

1 1 1

0

( ) ( )Pr( | , , )
lim

( ) 1 ( )

hj hjn n n n
hj

d
hj hj

f d f dd S d d J j J h S d

d S d F d
 + + +

 →

  +  = = 
= = =

 −
(23) 
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6.1.1. Distribution of Durations 

For the Semi-Markov process, we need to first assume that sojourn time (gap time or lag time) belongs to 

a specific parametric distribution. The sojourn time, given any state h to state j, is modeled as a random 

variable from the best fitted distribution. The SemiMarkov package in R software (Listwon-Krol and Saint-

Pierre, 2015) offers three distributions -- Exponential, Weibull and Exponential Weibull. Based on 

maximum likelihood estimation, the Weibull distribution (Weibull, 1951) was chosen to model the sojourn 

time from state h to state j. The Weibull distribution is defined as the probability density function: 

1

( | , )

−  
− 
  

=  
 

k
k x

k x
f x k e 

 
(24) 

According to Equations (23) and (24), the hazard ratio for the Weibull distribution is: 

1
( )

1 ( )

−

 
= =  

−  

k

hj

hj

hj

f d k x

F d


 
(25) 

Table 9.Weibull Distribution Duration Parameters 

Duration Parameters in Weibull Distribution 

Transition One-Way Two-Way 

λ k λ k 

Estim. SE Estim. SE Estim. SE Estim. SE 

1→2 2.864 0.12 1.364 0.06 3.021 0.09 1.785 0.07 

1→3 2.014 0.04 1.843 0.04 2.229 0.06 1.794 0.05 

2→3 1.881 0.11 1.329 0.07 1.67 0.11 1.075 0.05 

Table 10.Wald Test of Weibull Distribution 

One-Way Two-Way 

Transition Wald Test P-value Transition Wald Test P-value 

1→2 43.53 <0.0001 1→2 128.59 <0.0001 

1→3 357.06 <0.0001 1→3 259.26 <0.0001 

2→3 19.84 <0.0001 2→3 1.89 0.1692 
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Figure 15.Density Functions Between Different Transitions. 

Figure 15 shows the probability density function for every transition. The transition 1-2-3 (reject 

the lag, then accept the next gap) can be expressed as the convolution product 

, where x = the total wait time during the transition 1-2-3. The probability 
1 2 3 1 2 2 3

0
( ) ( )

x

f f u f x u du− − − −= −
density function 1 2 ( )−f u permits the calculation of the probability that the transition from state 1 to state 2 

takes place in μ time units. The probability density function 2 3( )f x u− − leads to the probability that the 

transition from state 2 to state 3 takes place in the remaining x- μ time units. Table 11 shows the most likely 

wait times for each distribution. 

Table 11.The Most Likely Wait Times 

The most likely wait times One-Way Two-Way 

Transition 1-2 1.087s 1.906s 

Transition 1-3 1.317s 1.415s 

Transition 1-2-3 3.15s 3.38s 

On the one hand, Transition 1-2-3 includes recurrent events -- rejecting the first lag (the first vehicle 

does not yield), then accepting the following gap (second interacted vehicle yields). Although there is 

information about the two events, the survival model only used information about the first event (Transition 

1-2). On the other hand, when a pedestrian experiences Transition 1-2, it means that he/she rejects a gap 

and his/her accepted wait time is greater. The Semi-Markov model considers state 2 as a right-censored 

state. The Semi-Markov model has the potential to estimate the pedestrian actual accepted wait time 

continuously through the Markovian renewal process until the last observation is observed. 
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6.1.2. Parameterization 

In order to illustrate the influence of covariates associated with the Semi-Markov process, the Cox 

proportional model (Cox, 1972) was used. Let Zhj be a vector of explanatory variables related to the 

transition from h to j and βh,j be the vector of estimated regression parameters. By the Cox proportional 

model: 

, , ,( | ) ( )exp( )T

hj h j hj h j h jd Z d Z  = (26) 

According to Equation (26), we took advantage of transition-specific variables Zh,j defined in Table 

6. Using the Semi-Markov package in R, significant factors were retained. The estimated regression 

coefficients are shown in Table 12. Table 12 illustrates the effects of covariates on the sojourn time in each 

transition. Positive coefficients denote the increasing risk or accelerating factors. while negative 

coefficients demonstrate decreasing risk. We will discuss the effects of significant variables in the following 

sections. 

Table 12.Parametric Effects of Multi-State Model 

Coefficients One-Way Two-Way 

1→2 1→3 2→3 1→2 1→3 2→3 

Near or Far Side - - - - - -

Group Size - - - 0.123. 0.078** 0.199* 

Nr. Ped. Crossing -0.319*** 0.105*** -0.148*** 0.082*** -

Close Follower 

Indicator 

-0.459*** - - -0.184. 0.196* -

Adjacent Vehicle - -0.196* 0.450* - - -

Sex - - 0.325* - - 0.353* 

Age - -0.355*** 0.312* - -0.371*** -

Nr. Ped. Waiting - -0.157*** - 0.134** - -

Hesitation -1.364* -1.287*** -1.316*** -0.351. -1.165*** -0.877*** 

Vehicle Type -0.173*** - - - 0.318* -

Distance -0.635*** 0.303*** - -0.456*** - -

Approaching 

Speed 

0.057*** -0.031*** - 0.034*** -0.011* -

Distraction - - - - - -0.312. 

Log-Likelihood -1128.8095 vs -1318.376 (Null LL) -1097.4645 vs -1191.7082 (Null LL) 

. p<0.1; * p<.05; ** p<.01; *** p<.001 
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6.1.3. Hazard of Semi-Markov Process 

The hazard rate of a Semi-Markov process is defined as the probability of transition towards state j between 

the time d and d+Δd, given that the process is in state h for a duration d. 

1 1 1

0

Pr( , | , )
( ) lim

( ) (1 ( ))
 =    if    >0    and   ( ) 1  

          1 ( ) 1 ( ) 1 ( )

0                                     otherwise

n n n n
hj

d

hj hj hj hj hj hj

hj h

h h h

J j d S d d J h S d
d

d

q p f d p F d
p H d

H d H d H d





+ + +

 →

=   +  = 
=



−
= 

= − − −



(27) 

Note that Equation (25) and Equation (27) demonstrate two different hazards. To better understand 

the differences, we defined the hazard in Equation (25) as the hazard given transition from state h to state 

j. The hazard defined by Equation (27) is the hazard of the Semi-Markov process, which represents the 

immediate probability of going to state j given state h in a small-time interval [d, d+Δd] (Dominicis and 

Manca, 1984). Therefore, for the state space I = {1, 2, 3}, we can use Equation (27) to calculate the “staying” 
probability for the case h=j: 

12 13
0

23
0

( ) ( )  

11

( ) 

22

33

( )

( )

( ) 1

d

d

d

d

p d e

p d e

p d

    

  

− +

−

=

=

=

(28) 

Consequently, we can calculate the probabilities of each transition in a Markov chain as: 

1 2 11 1 2 22
0

1 3 11 1 3 33
0

2 3 22 2 3 33
0

1 2 3 11 1 2 2 3
0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

d

d

d

d

p d p p d d

p d p p d d

p d p p d d

p d p p d d

    

    

    

    

− −

− −

− −

− − − −

= −

= −

= −

= −









(29) 

An interpretation will be needed to illustrate the transition P1-2-3(d) in Equation (29). The term 

11 1 2( ) ( )p   −
denotes the transition from state 1 to 2 (pedestrian rejects the first lag, or the first vehicle 

doesn’t yield) in τ duration time. 
2 3( )p d − − indicates the probability of transferring from state 2 to state 3 

(pedestrian accepts the next gap) in the remaining time d-τ. 

P1-3 and P1-2-3 in Equation (29) are the total waiting behavior of pedestrians in the curb area, because 

the total number of transitions 1-3 + 1-2-3 is 966 out of 1132 for the one-way case.  Therefore, we can use 

the transition probability of the Semi-Markov process P1-3 + P1-2-3 to explain the variables in Table 12. 
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6.2. Model Discussions 

For a one-way operation: 

6.2.1. Number of Pedestrians Impacts 

(A). Figure 16 (a) shows that the number of pedestrians already on the crosswalk will speed up the 

Transition 1-3 (-0.319*** in Table 12). Pedestrians on a crosswalk is an indication that it is safe to cross. 

Nevertheless, the number of pedestrians on crosswalks will cause much more delay for Transition 1-2-3 

(0.105*** in Table 12 for Transition 1-2). This indicates that, if there are many pedestrians already on the 

crosswalk and a pedestrian chooses to wait, he or she should wait for a longer time for 1-2-3. 

(B). Figure 16 (b) indicates that the number of pedestrians waiting on curb will result in a delay for subject 

pedestrian to cross for Transition 1-3 (-0.157*** in Table 12). 

(a) Nr. of Pedestrians on Crosswalks 

(b) Nr. of Pedestrians on Curb Waiting 

Figure 16. Pedestrian Impacts 
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Vehicle Dynamics 

Figure 17(a) demonstrates that a platoon of vehicles has little impact on the decision-making process for 

Transition 1-3 because pedestrians only “negotiate” with the leading vehicle while making a decision. The 
close follower indicator has effects on delay on Transition 1-2-3 (-0.459*** for Transition 1-2 in Table 12), 

however. For Transition 1-2-3, if a pedestrian chooses to wait for a platoon of vehicles, he or she can expect 

to wait for a longer time compared with individual vehicle. 

The adjacent vehicle indicator has a negative impact on Transition 1-3 (-0.196* in Table 12) 

because pedestrians have to “negotiate” with two different vehicles in different lanes. See Figure 17(b). 

(a) Close Following Vehicle Impact 

(b) Adjacent Vehicle Impact 

Figure 17. Multiple Vehicle Effects 
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6.2.2. Hesitation 

The Hesitation parameter (-1.364* for Transition 1-2; -1.286*** for Transition 1-3; and -1.316*** for 

Transition 2-3 in Table 12) has effects on delay on pedestrian waiting behavior.  This is intuitive because, 

if a pedestrian hesitates in the curb area, the misunderstanding between pedestrians and motorists increases. 

This will delay the pedestrian’s time to cross. See Figure 18. 

Figure 18. Hesitation Parameter Effects 

6.2.3. Pedestrian Characteristics 

Figure 19 illustrates the effects of pedestrian characteristics on pedestrian waiting process. Compared with 

other groups, young pedestrians are more assertive for Transition 1-3 (-0.355*** in Table 12) because they 

have lower wait durations than do other groups. See Figure 19(a). Besides, males are less likely than females 

to wait for subsequent gaps (0.325* in Table 12). See Figure 19(b).  

(a) Age 
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(b) Sex 

Figure 19. Pedestrian Characteristics Impact 

6.2.4. Distance and Speed 

(A). Distance has significant impact on pedestrian waiting behavior. For Transition 1-3 (0.303*** in Table 

12), with the increase of distance to vehicle, pedestrian wait time is reduced. However, it has inverse effects 

on the transition 1-2-3. A shorter distance to the first interacted vehicle will result in a faster transition 1-2 

(-0.635*** in Table 12) and then speed up the waiting process for Transition 1-2-3. The closer the vehicle 

is to the crosswalk, the more uncertain and unsafe a pedestrian feels. “Let the car go first” will be a safe 
crossing strategy for pedestrians, if the interacted vehicle is too close to yield. See Figure 20. 

Figure 20. Distance Parameter Effects 
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(B). The effects of vehicle speed on pedestrian decision making are shown in the following figure. We can 

see that, with the increase in speed, the pedestrian wait time of Transition 1-3 (-0.031*** in Table 12) is 

increasing, while the pedestrian wait time of transition 1-2-3 is decreasing. The first interacted vehicle will 

pass the area quickly with a higher speed, which result in a faster transition 1-2 (0.057*** in Table 12) so 

that it reduces the delay for transition 1-2-3. “Let the car go first” will also be a safe crossing strategy for 
pedestrian to cross, if the interacted vehicle is too fast to yield. See Figure 21. 

Figure 21. Speed Parameter Effects 

6.3. Before and After Studies 

6.3.1. Group Effects 

The Markovian model shows results similar to the Survival model. The number of pedestrians in a group 

significantly decreases the pedestrian delay in transitions 1-3 (0.078** in Table 12) and 2-3 (0.199* in 

Table 12). See Figure 22. 

Figure 22. Group Effects on Two-Way Case 
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6.3.2. Using Cellphone or Talking 

While using a cellphone or talking, pedestrians have a lower risk moving from state 2 to state 3 (-0.312. in 

Table 12), which results in a higher delay. See Figure 23. 

Figure 23. Distraction Effects on Two-Way Case 

6.3.3. Vehicle Type 

Vehicle Type affects delay in Transition 1-2-3 with one-way street operation period. This indicates that, if 

a pedestrian chooses to yield to a bus (Transition 1-2 -0.173*** in Table 12), he/she has to wait longer. 

However, after conversion to a two-way street, the crossing probability for Transition 1-3. This is reflected 

in a higher probability to choose Transition 1-3 (0.318* in Table 12) with two-way operation. After the 

conversion from one-way to two-way operation, Lafayette CityBus was required to remove most bus routes 

from University Street. Therefore, in the two-way case, there were fewer buses. 

6.3.4. Adjacent Vehicle 

Adjacent vehicle has no effects on two-way cases. This means that whether a pedestrian waits or not is less 

likely to be affected by an adjacent vehicle when a pedestrian-motorist interaction occurs. We found the 

similar results in the analysis of motorist behavior. 
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7. CONCLUSIONS AND RECOMMENDATIONS 

7.1. Pedestrian-Motorist Interaction 

Table 13 summarizes the variables (defined in Table 1) that were found to be significant in explaining the 

pedestrian and motorist behavior seen in the recorded video at the University Street crosswalks. Some 

variables were found to be significant in both the one-way and two-way street cases. Combining the one-

way and two-way data, we were able to identify factors that changed significantly between the two cases. 

These are shown with check marks in the “Significant difference” columns of Table 13. 

Table 13.Summary of Model Results 

Variable Pedestrian Model Motorist Model 

Significant in 

both cases 

Significant 

difference 

Significant in 

both cases 

Significant 

difference 

ApprSpeed √ — √ — 

Hesitation √ √ √ √ 

FlowWith/On — √ √ — 

SlowsDown √ — — — 

Distance √ — — √ 

AdjVeh — √ — √ 

NoF √ — — √ 

GroupSize — √ — — 

— = not applicable 

The model results are consistent with expectations in terms of the direction of influence. Some 

examples are described below. 

A pedestrian is more likely to cross during an interaction at the semi-controlled crosswalk if the 

approaching vehicle is moving at a slow speed, is slowing down, or is far enough away from the crosswalk.  

However, what this research offers is a more quantitative assessment of the pedestrian response to these 

and other factors, as well as highlighting the importance of a pedestrian’s actions with respect to hesitation. 
While the findings of the pedestrian model are largely behavioral, there are some practical aspects to the 
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findings.  For example, the approach speed finding above can be translated into a speed that would lead to 

a desired likelihood of pedestrians choosing to cross, all else being equal.  

The study found factors that affect an approaching driver’s behavior, which focused on a driver’s 
likelihood of slowing down for pedestrians, rather than the likelihood of yielding. Examples of these 

findings with respect to two-way vehicle traffic operation are: 

A. A greater number of pedestrian characteristics factors (Hesitation, Distraction and FlowOn) have 

a significant impact on a driver’s willingness to decelerate in the two-way case than in one-way 

operation.  

B. Except for the speed variable (AppSpeed), variables concerning vehicle dynamics and 

characteristics become insignificant (CloseFollow and AdjVeh), when compared with one-way 

operation.  This means that a driver on the two-way street is less likely to be affected by a close-

following vehicle or by an adjacent vehicle when a pedestrian-motorist interaction occurs. 

C. Environmental characteristics factors (Distance and NoF) became significant in a driver’s decision 
to slow down, compared to one-way operation. 

A driver’s decision is mainly influenced by interacted pedestrian behavior and the environmental 

characteristics when an interaction occurs. The change of one-way to two-way operation removed the 

effects of interaction between vehicles (CloseFollow and AdjVeh) on a driver’s decision and led drivers to 
react more to the interacted pedestrian. 

7.2. Pedestrian Waiting Time 

This research describes the data and models used to analyze the wait durations of pedestrians when they 

interact with vehicles at “semi-controlled” crosswalks. The variables for 2059 pedestrian wait durations 
were carefully defined and measured from video recordings. 

Survival models and multi-state Markov models were developed and compared. In Survival 

models, time-to-first-event analysis was conducted, which suggested a non-monotonic relationship of 

distance and speed on pedestrian waiting behavior in one-way operation. In multi-state Markov models, 

recurrent events analysis was undertaken, which examined transition-specific covariates on pedestrian 

waiting behavior. Both models showed different results. 

Survival models consider the first event as the most important interaction and suggested different 

waiting behaviors in terms of pedestrian characteristics, vehicle dynamics and environmental factors when 

one-way converted to two-way operation. Multi-state semi-Markov model suggested consistent pedestrian 

waiting behaviors when one-way convert into a two-way operation. Compared with survival models,  

1. Multi-state Markov models can better explain the covariates impact in different waiting transitions 

(1-3 vs 1-2-3) and the impact of vehicle yielding on pedestrian wait durations, which provides in-

depth insights about pedestrian wait strategies. For example, after rejecting the first lag (the first 

vehicle doesn’t yield and second vehicle comes), males are more unwilling to wait than females. 

2. Semi-Markov models help to explain the non-monotone relationship of speed and distance found 

in survival model. 

3. Multi-state Markov models can be further improved by including random effects to correlate in-

group observations. Furthermore, it can be flexible if more sojourn time distributions are tested. 
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4. One limitation for Markovian model is that existing statistical software cannot deal with the 

Transition 2-2. This lost the information when pedestrians rejected multiple gaps. We hope to solve 

this problem in my future research. 

In Chapter 5, Survival models reveal a non-monotone relationship between distance, speed and 

pedestrian wait time. In Chapter 6, we analyze the effects of vehicle yielding behavior on pedestrian wait 

durations which provides information for non-monotone relationships. The non-monotone relationship is a 

paradox that if a vehicle too close and too fast to yield, the strategy - “let vehicle go first” will not cause 
much delay for pedestrian. However, if vehicle is too close and too fast, many dangerous interactions will 

probably occur. If the vehicle is neither too far nor too close, the game between pedestrian and motorist 

will be more complicated. There is a tradeoff for city engineer to consider. On the one hand, use control 

strategies such as bumper or pedestrian signals to increase vehicle yielding rates while this will result in a 

higher vehicle delay and pedestrian confusion in specific areas. On the other hand, encouraging drivers to 

“ignore” far side pedestrians when the interacted distance is close so that it will increase the efficiency. 

However, this will may cause a lower post encroachment time (PET) and higher crash rates. Besides, future 

research should focus specifically on the areas where most complicated games between pedestrians and 

motorists occur. Simple model structures may not explain the complicated games and some of the most 

advanced frontier of modeling approaches such as Markov switching models, multivariate models etc. can 

be further explored. Finally, both survival models and Markovian models reveal that pedestrian in a group 

will result in a lower delay for pedestrian in two-way case. City engineers can consider the geometry designs 

near the crosswalks to indirectly increase pedestrian arriving groups when pedestrian flow is high. 
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8. SYNOPSIS OF PERFORMANCE INDICATORS 

8.1 Part I 

One (1) transportation-related course was offered during the study period that was taught by the PI and a 

teaching assistant who are associated with the research project. One (1) graduate student participated in the 

research project during the study period. One (1) transportation-related advanced degree (doctoral) program 

utilized the CCAT grant funds from this research project, during the study period to support graduate 

students. One student supported by this grant received a doctoral degree. This research project was 

leveraged to obtain $109,709 in additional funding for projects such as SPR-4301: Assessment of an Offset 

Pedestrian Crossing for Multilane Arterials. 

8.2 Part II 

Research Performance Indicators: 3 journal articles and 3 conference articles were produced from this 

project. The research from this advanced research project was disseminated to over 200 people from 

industry, government, and academia. The research was presented at several conferences, including the 

2019 Purdue Road School in West Lafayette, the 2019 Next Generation Transportation Systems Conference 

(NGTS), the 2019 ITE (Purdue Chapter) Annual Dinner, the 2018 TRB annual meeting, and the 2019 TRB 

annual meeting.  The outputs, outcomes, and impacts are described in the following sections. 

9. OUTPUTS, OUTCOMES, AND IMPACTS 

9.1. Research Outputs 

9.1.1. Synopsis of Project 

The project exceeded expectations, in that the results went far beyond a basic "inventory" and categorization 

of interactions between pedestrians and motorists. Appropriate statistical analysis has revealed factors and 

relationships that are described in three papers listed in the following section. 

9.1.2. List of Publications 

Fricker, J. D., & Zhang, Y. (2019). Modeling Pedestrian and Motorist Interaction at Semi-Controlled 

Crosswalks: The Effects of a Change from One-Way to Two-Way Street Operation. Transportation 

Research Record. https://doi.org/10.1177/0361198119850142. 

Zhang, Y., Qiao, Y., & Fricker, J. D. (2020). Investigating Pedestrian Waiting Time at Semi-Controlled 

Crossing Locations: Application of Multi-State Models for Recurrent Events Analysis. Accident 

Analysis & Prevention, 137, 105437. 

https://www.sciencedirect.com/science/article/pii/S0001457519308759 
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Zhang, Y., & Fricker, J. D. (2020). Multi-State Semi-Markov Modeling of Recurrent Events: Estimating 

Driver Waiting Time at Semi-Controlled Crosswalks. Analytic Methods in Accident Research, 

100131. https://www.sciencedirect.com/science/article/pii/S221366572030021X 

9.1.3. List of Presentations 

Jon, D. Fricker, Yunchang Zhang (2019) Modeling Pedestrian and Motorist Behavior at Semi-Controlled 

Crosswalks: The Effect of a Change from One-Way to Two-Way Street Operation. Presented at 

the Transportation Research Board 98th Annual Meeting, January 2019. 

Yunchang Zhang, Jon, D. Fricker (2019). “Smart Interaction – Pedestrians and vehicles in a CAV 

environment”. Presented at the 1st Annual Conference on Next-Generation Transport Systems, 

May 2019. 

Yunchang Zhang, Jon, D. Fricker (2020). “Multi-State Semi-Markov Models: An Application to Drivers’ 
Gap Acceptance in front of Approaching Pedestrians at Unsignalized Crosswalks”. Presented at 

the Transportation Research Board 99th Annual Meeting, January 2020. 

9.1.4. List of Outcomes and Highlights 

The outcomes and highlights from this project are: 

• “Semi-controlled” crosswalks are unsignalized but marked with “yield to pedestrian” signs. 
• Pedestrians and motorists engage in non-verbal “negotiation” to decide priority. 
• Video recordings were made of 2059 pedestrians interacting with 1003 motorists. 

• A conversion from 1-way to 2-way operation allowed a before-and-after study at the same 

location. 

• The probabilities of pedestrian wait time are quantified under alternative scenarios. 

9.1.5. List of Impacts 

This study improves the operation and safety of semi-controlled crosswalks by developing a database and 

identifying factors that affect pedestrian and motorist behavior.  

1. This information can be used to test the impact of new technologies on crosswalk safety and 

performance. 

2. We maintain an ongoing relationship with the Area Plan Commission of Tippecanoe County, 

whose staff is engaged in data collection of pedestrian, bicycle, and scooter activity at busy 

locations downtown and near campus.  We shared data and analysis of "hotspots". 

3. A coupling project with INDOT is a perfect complement to this study, in that it offers opportunities 

to apply a variety of designs and control methods to other types of crossing locations. 

55 

https://www.sciencedirect.com/science/article/pii/S221366572030021X


 

 

 

  

      

  

    

  

     

      

 

       

       

  

        

 

       

 

     

  

   

         

 

 

       

 

     

       

 

 

         

 

        

 

    

  

LIST OF REFERENCES 

Akaike, H. Factor analysis and AIC. Psychometrika. 1987. 52(3), 317-332. 

Andersen, P. K., & Gill, R. D. (1982). Cox's regression model for counting processes: a large sample study. 

The annals of statistics, 1100-1120. 

Bjørnskau, T. (2017). The Zebra Crossing Game–Using game theory to explain a discrepancy between road 

user behaviour and traffic rules. Safety science, 92, 298-301. 

Brüde, Ulf, and Jörgen Larsson. Models for Predicting Accidents at Junctions where Pedestrians and 

Cyclists Are Involved. How Well Do They Fit? Accident Analysis & Prevention, 1993. 25: 499-

509. 

Camara, F., Romano, R., Markkula, G., Madigan, R., Merat, N., & Fox, C. (2018, March). Empirical game 

theory of pedestrian interaction for autonomous vehicles. In Proceedings of Measuring Behavior 

2018. Manchester Metropolitan University. 

Chung, Y. (2010). Development of an accident duration prediction model on the Korean Freeway Systems. 

Accident Analysis & Prevention, 42(1), 282-289. 

Cox, D. R. (1972). Regression models and life‐tables. Journal of the Royal Statistical Society: Series B 
(Methodological), 34(2), 187-202. 

Cloutier MS, Lachapelle U, d’Amours-Ouellet AA, Bergeron J, Lord S, Torres J. “Outta my way!” 

Individual and Environmental Correlates of Interactions Between Pedestrians and Vehicles during 

Street Crossings. Accident Analysis & Prevention, 2017. 104: 36-45. 

Cross Validated, Test the Significant Differences Between the Coefficients Obtained by Logistic 

Regression on Two Data Sets, https://stats.stackexchange.com/questions/20330/test-the-

significant-differences-between-the-coefficients-obtained-by-logistic-r, Accessed December. 17, 

2018. 

De Dominicis, R., & Manca, R. (1984). An algorithmic approach to non-homogeneous semi-Markov 

processes. Communications in Statistics-Simulation and Computation, 13(6), 823-838. 

Fricker, J. D., & Zhang, Y. (2019). Modeling Pedestrian and Motorist Interaction at Semi-Controlled 

Crosswalks: The Effects of a Change from One-Way to Two-Way Street Operation. Transportation 

Research Record, 0361198119850142. 

Harrell, F. E. Regression Modeling Strategies. Springer-Verlag, New York, 2015. 

Himanen V, Kulmala R. An Application of Logit Models in Analysing the Behaviour of Pedestrians and 

Car Drivers on Pedestrian Crossings. Accident Analysis & Prevention, 1988. 20:187-97. 

Guan, J., Wang, K., & Chen, F. (2016). A cellular automaton model for evacuation flow using game theory. 

Physica A: Statistical Mechanics and its Applications, 461, 655-661. 

Guo, H.W., Gao, Z.Y., Yang, X.B., Jiang, X.B. Modeling pedestrian violation behavior at signalized 

crosswalks in China: a hazards-based duration approach. Traffic Inj. Prev. 2011. 12 (1), 96–103. 

56 

https://stats.stackexchange.com/questions/20330/test-the


 

 

   

 

         

      

 

     

 

     

     

      

 

    

  

          

 

       

 

   

      

      

 

       

 

       

 

 

   

  

        

 

   

 

 

   

  

Guo, H.W., Wang, W.H., Guo, W.W., Jiang, X.B., Bubb, H. Reliability analysis of pedestrian safety 

crossing in urban traffic environment. Saf. Sci. 2012. 50 (4), 968–973. 

Kadali BR, Rathi N, Perumal V. Evaluation of Pedestrian Mid-block Road Crossing Behaviour Using 

Artificial Neural Betwork. Journal of Traffic and Transportation Engineering (English Edition), 

2014. 1:111-9. 

Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the 

American statistical association, 53(282), 457-481. 

Leaf WA, Preusser DF. Literature Review on Vehicle Travel Speeds and Pedestrian Injuries. US 

Department of Transportation, National Highway Traffic Safety Administration, 1999.Williams R. 

Generalized Ordered Logit/Partial Proportional Odds Models for Ordinal Dependent Variables. 

Stata Journal, 2006. 6: 58. 

Lee, R. (2000). The Lee-Carter method for forecasting mortality, with various extensions and applications. 

North American actuarial journal, 4(1), 80-91. 

Li, B.B. A model of pedestrians’ intended waiting times for street crossings at signalized intersections. 

Transport. Res. Part B. 2013. 51 (1), 17–28. 

Lord S, Cloutier MS, Garnier B, Christoforou Z. Crossing Road Intersections in Old Age—With or Without 

Risks? Perceptions of Risk and Crossing Behaviours among The Elderly. Transportation Research 

Part F: Traffic Psychology and Behaviour, 2018. 55: 282-96. 

Michalaki P, Quddus MA, Pitfield D, Huetson A. Exploring the Factors Affecting Motorway Accident 

Severity in England Using the Generalised Ordered Logistic Regression Model. Journal of Safety 

Research, 2015. 55: 89-97. 

Nam, D., Mannering, F., 2000. An exploratory hazard-based analysis of highway incident. Transp. Res. 

Part A 34 (2), 85–102. 

Ouhbi, B., & Limnios, N. (2003). Nonparametric reliability estimation of semi-Markov processes. Journal 

of Statistical Planning and Inference, 109(1-2), 155-165. 

Papadimitriou E. Theory and Models of Pedestrian Crossing Behaviour along Urban Trips. Transportation 

Research Part F: Traffic Psychology and Behaviour, 2012. 15: 75-94. 

Papadimitriou E, Lassarre S, Yannis G. Introducing Human Factors in Pedestrian Crossing Behaviour 

Models. Transportation Research Part F: Traffic Psychology and Behaviour, 2016. 36:69-82. 

Paselk, T., Mannering, F., 1993. Use of duration models for predicting vehicular delay at a US/Canadian 

border crossing. Transportation 21, 249±270. 

Prentice, R. L., Williams, B. J., & Peterson, A. V. (1981). On the regression analysis of multivariate failure 

time data. Biometrika, 68(2), 373-379. 

Sal Amati K, Schroeder B, Geruschat D, Rouphail N. Event-Based Modeling of Driver Yielding Behavior 

to Pedestrians at Two-Lane Roundabout Approaches. Transportation Research Record: Journal of 

the Transportation Research Board, 2013. 2389: 1-1. 

57 



 

 

          

  

    

 

   

       

 

     

    

 

         

  

     

 

 

         

 

   

    

 

    

       

 

        

  

     

     

 

      

 

         

 

 

 

 

 

Schroeder BJ, Rouphail NM. Event-Based Modeling of Driver Yielding Behavior at Unsignalized 

Crosswalks. Journal of Transportation Engineering, 2010. 137: 455-65. 

Sucha M, Dostal D, Risser R. Pedestrian-Driver Communication and Decision Strategies at Marked 

Crossings. Accident Analysis & Prevention, 2017. 102: 41-50. 

Sun, D., Ukkusuri, S. V. S. K., Benekohal, R. F., and Waller, S. T. Modeling of Motorist-Pedestrian 

Interaction at Uncontrolled Mid-block Crosswalks. 82nd Annual Meeting of the Transportation 

Research Record, Washington, D.C., 2003. 

Tiwari, G., Bangdiwala, S., Saraswat, A., & Gaurav, S. (2007). Survival analysis: Pedestrian risk 21 

exposure at signalized intersections. Transportation research part F: traffic psychology and 22 

behaviour, 10(2), 77-89. 

Wang X, Abdel-Aty M. Analysis of Left-turn Crash Injury Severity by Conflicting Pattern Using Partial 

Proportional Odds Models. Accident Analysis & Prevention, 2008. 40: 1674-82. 

Washington, S. P., Karlaftis, M. G., & Mannering, F. (2010). Statistical and econometric methods for 

transportation data analysis. Chapman and Hall/CRC. 

Wei, L. J., Lin, D. Y., & Weissfeld, L. (1989). Regression analysis of multivariate incomplete failure time 

data by modeling marginal distributions. Journal of the American statistical association, 84(408), 

1065-1073. 

Williams R. GOLOGIT2: Stata Module to Estimate Generalized Logistic Regression Models for Ordinal 

Dependent Variables. Stata Software Components. Boston College Department of Economics; 

2016. 

Yang, X. , Huan, M. , Abdel-Aty, M. , Peng, Y. , & Gao, Z. . (2015). A hazard-based duration model for 

analyzing crossing behavior of cyclists and electric bike riders at signalized intersections. Accident 

Analysis & Prevention, 74, 33-41. 

Yannis G, Papadimitriou E, Theofilatos A. Pedestrian Gap Acceptance for Mid-block Street Crossing. 

Transportation Planning and Technology, 2013. 36: 450-62. 

Ye, F., Lord, D., 2014. Comparing three commonly used crash severity models on sample size 

requirements: multinomial logit, ordered probit and mixed logit models. Anal. Methods Accid. Res. 

1, 72–85. 

Zhang, Yunchang (2019): Pedestrian – Vehicle Interactions at Semi-Controlled Crosswalks: Explanatory 

Metrics and Models. figshare. Thesis. 

Zhuang X, Wu C. Pedestrians’ Crossing Behaviors and Safety at Unmarked Roadway in China. Accident 

Analysis & Prevention, 2011. 43:1927-36. 

58 



 

 

 

 

   

 

 

 

   

 

 

 

 

 

  

 

 

  

    

 

    

   

 

   

  

   

 

 

    

  

  

  

 

 

 

 

 

 

 

APPENDIX: JOURNAL PAPERS PUBLISHED FROM THIS WORK 

CCAT Project Title: Pedestrian-Vehicle Interaction in a CAV Environment: Explanatory Metrics 

Fricker, J.D., and Zhang, Y. (2019). Modeling Pedestrian and Motorist Interaction at Semi-Controlled 

Crosswalks: The Effects of a Change from One-Way to Two-Way Street Operation, Transportation 

Research Record 2673(11), 433-446. 

Abstract: 

A large number of crosswalks are indicated by pavement markings and signs, but are not signal-

controlled. In this paper, such a location is called “semi-controlled.” At locations where such a crosswalk 
has moderate amounts of pedestrian and vehicle traffic, pedestrians and motorists often engage in a non-

verbal “negotiation” to determine who should proceed first. This paper describes the detailed analysis of 
video recordings of more than 3,400 pedestrian–motorist interactions at semi-controlled crosswalks. The 

study also took advantage of a conversion from one-way operation in spring 2017 to two-way operation in 

spring 2018 on the street chosen for data collection and analysis. This permitted before and after studies at 

the same location. The pedestrian models used mixed effects logistic regression and binary logistic 

regression to identify factors that influence the likelihood of a pedestrian crossing under specified 

conditions. The complementary motorist models used generalized ordered logistic regression to identify 

factors that impact a driver’s likelihood of decelerating, which was found to be a more useful factor than 

likelihood of yielding to pedestrian. The data showed that 56.5% of drivers slowed down or stopped for 

pedestrians on the one-way street. This value rose to 63.9% on the same street after it had been converted 

to two-way operation. Moreover, two-way operation eliminated the effects of the presence of other 

vehicles on driver behavior. Relationships were found that can lead to policies and control strategies 

designed to improve the operation of such a crosswalk. Video recordings were made of pedestrians using 

crosswalks at locations in West Lafayette, Indiana, where “State Law Yield to Pedestrian Within 

Crosswalk” signs (Figure 1a) were present. Pedestrians at such crossings theoretically have priority over 

approaching vehicles in Indiana. Observations indicate that confusion exists among pedestrians and 

motorists, however, because the sign’s message is subject to varying interpretations. Sometimes drivers 

stop and let pedestrians standing at the curb cross the street, and sometimes drivers fail to yield to 

pedestrians entering the crosswalk. Although marked crosswalks can have relatively high fatality rates per 

pedestrian crossing, no safety issues were observed during the data collection at the locations studied; it 

was primarily a matter of delay. 
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Zhang, Y. and Fricker, J.D (2020). Multi-state semi-Markov modeling of recurrent events: Estimating 

driver waiting time at semi-controlled crosswalks, Analytic Methods in Accident Research, 28(1), 

100131. 

Abstract: 

At “semi-controlled” crosswalks, signs and markings are present, but delay to pedestrians and 

motorists is largely the result of the “negotiation” between the two parties to determine who yields. This 

paper proposes a novel approach using multi-state semi-Markov models to investigate motorists’ delay 
and their interactions with pedestrians. Motorist waiting behavior can be divided into a series of gap 

acceptance decisions as part of a Markov Chain. Each gap acceptance decision is modeled as a specific 

transition between two states in the Markov Chain. To demonstrate the reliability of the proposed models, 

multi-state semi-Markov models are estimated for the waiting behavior of more than 1,000 drivers in the 

presence of pedestrians at semi-controlled crosswalks. The multi-state semi-Markov models are capable 

of dealing with specific challenges related to (i) the need to account for recurrent events and (ii) a 

generalized framework for vehicle delay estimation and simulation at semi-controlled crosswalks. The 

extent to which motorists behave more aggressively and impatiently as their delay increases is 

demonstrated. Differences in behavior for operators of buses and trucks were also identified. The semi-

Markov method is also able to deal effectively with the “pulsing” arrival patterns of pedestrians at 
crosswalks as university classes begin and end nearby and handle temporal heterogeneity. Finally, to 

address aggressive driver behavior, several safety implications are discussed. 

Zhang, Y., and Fricker, J.D. (2021). Incorporating conflict risks in pedestrian-motorist interactions: A 

game theoretical approach, Accident Analysis & Prevention, 159(1), 106254. 

Abstract: 

At “semi-controlled” crosswalks with yield signs and markings, negotiations as to the right-of-way occur 

frequently between pedestrians and motorists, to determine who should proceed first. This kind of 

“negotiation” often leads to traffic delay and potential conflicts. To minimize misunderstandings between 

pedestrian and motorist that can have serious safety consequences, it is essential that we understand the 

decision-making process as the “players” interact in real street-crossing situations. This paper employs a 

game-theoretic approach to investigate the joint behaviors of pedestrians and motorists from the 

perspective of safety. Assuming bounded rationality for each player, the quantal response equilibrium is a 

special kind of game with incomplete information. Explanatory variables such as conflicting risks and 

time savings can be incorporated into the payoff functions of the “players” via expected utility functions. 

Finally, model parameters can be estimated using an expectation maximization algorithm. The game-

theoretic framework is applied to model pedestrian-motorist interactions at a semi-controlled crosswalk 

on a university campus. The estimation results indicate that the likelihood of pedestrian-vehicle conflict 

can be quantified. The results can lead to control measures that facilitate the negotiation between 

pedestrian and motorist and reduce the conflict risk at semi-controlled crosswalks. 
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